• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists develop novel base editors

Bioengineer by Bioengineer
August 29, 2023
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a study published in Nature Biotechnology on Aug. 28, GAO Caixia’s group at the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences and her collaborators at Qi Biodesign have reported a modular, CRISPR-free base editing system, which they call CyDENT, to achieve effective base editing in the nucleus, mitochondria and chloroplast genomes of plant and human cells.

Overview of CyDENT base editing

Credit: IGDB

In a study published in Nature Biotechnology on Aug. 28, GAO Caixia’s group at the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences and her collaborators at Qi Biodesign have reported a modular, CRISPR-free base editing system, which they call CyDENT, to achieve effective base editing in the nucleus, mitochondria and chloroplast genomes of plant and human cells.

Genome editing enables the efficient and precise modification of genetic information in living organisms, revolutionizing life science research as a whole. In recent years, the advent of base editing technology has made genome editing even more precise and predictable.

David Liu’s lab at the Broad Institute and Harvard University has pioneered the development of base editing. By fusing a nickase Cas9 with ssDNA-specific deaminases, they have successively developed the cytosine base editor (CBE) and adenine base editor (ABE) systems, which allow efficient C·G-to-T·A or A·T-to-G·C base conversions in the nuclear genome, respectively. Subsequently, they used a newly identified dsDNA-specific deaminase, DddAtox, to develop DdCBE, which enables efficient C·G-to-T·A in organellar genomes. Jin-Soo Kim’s lab built on DdCBE to develop TALED to achieve A·T-to-G·C base editing in mitochondrial genomes.

However, due to the dsDNA deamination properties of DddAtox, the DdCBE and TALED systems generate additional unintended off-target edits. Recently, WEI Wensheng’s team at Peking University has developed DddAtox-independent base editors, called mitoBEs, which improve the precision of mitochondrial base editing.

In this study, according to GAO, CyDENT consists of a pair of TALEs fused to a FokI nickase, a single-strand specific cytidine deaminase, an exonuclease and a uracil glycosylase inhibitor peptide. After the nickase nicks a TALE-guided strand of target DNA, the exonuclease next recognizes the nicked region and digests the nicked DNA strand, thereby exposing a short ssDNA fragment that serves as a substrate for single-strand DNA-specific deamination.

This strategy allows editing of single-strand DNA in the absence of a Cas9-guided R-loop structure, so base editing can be achieved without dsDNA deaminases. Since the entire CyDENT complex is RNA-free, this genome editing system enables strand-specific base editing in the nuclear and organellar genomes.

The researchers evaluated CyDENT base editing in nuclear and chloroplast target sites of rice protoplasts, and in mitochondrial sites of HEK293T cells. Effective base editing was demonstrated with editing efficiencies up to nearly 40% in the mitochondrial genome with high strand specificity. Using newly discovered ssDNA deaminases developed by the same groups, editing at TC or GC motifs was achieved, demonstrating the flexibility and modularity of the CyDENT systems.

Genome editing technologies have already made great strides in a wide range of research areas, including in the treatment of genetic diseases, the breeding of new and sustainable agricultural varieties, and the engineering of various microbiomes.

The development of CyDENT base editors expands the suite of precision genome editing technologies for both nuclear and organelle genome editing, thus facilitating better genetic designs.



Journal

Nature Biotechnology

DOI

10.1038/s41587-023-01910-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Strand-preferred base editing of organellar and nuclear genomes using CyDENT

Article Publication Date

28-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.