• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop new artificial ovary prototype

Bioengineer by Bioengineer
December 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Belgian researchers have taken important steps towards creating transplantable artificial ovaries. Once successful, these could be of value to women struggling with infertility or cancer patients who cannot conceive after undergoing radiation or chemotherapy. The research team has identified a protein formulation that closely resembles the structure and rigidity of the natural tissue lining a woman's ovaries, says Marie-Madeleine Dolmans of the Université Catholique de Louvain in Belgium, in an article in Springer's Journal of Assisted Reproduction and Genetics.

Through cryopreservation, it is already possible to store a cancer patient's ovarian tissue and to transplant it back into her body once her cancer treatment has been completed and she has gone into remission. The technique has already helped 130 mothers who survived cancer to conceive and give birth (NEJM, 2017, Oct 26, Donnez and Dolmans). Such treatment is, however, not advisable for patients who have a risk of malignant cells in their frozen ovarian tissue. In that case, ovarian tissue cannot be re-implanted because of the chances that their cancer could return. Developing a transplantable artificial ovary with isolated follicles from their tissue could therefore offer these women more possibilities for them to conceive.

The first step in the process is to remove and freeze some ovarian tissue before a woman starts cancer treatment. When needed, follicles (producers of hormones such as oestrogen and the precursors of mature female egg cells) are isolated from the ovarian tissue and encapsulated within a scaffold made of fibrin that is grafted to the patient. This hopefully restores the patient's hormonal and reproductive functions. In previous studies, Dolmans' research team used a type of filamentous protein around which blood clots form called fibrin to construct the necessary artificial ovary tissue scaffolding or matrixes.

"The ideal is that these matrixes should mimic the structure and physical properties of the human ovary in such a way that it could ideally support the growth of follicles within which the egg cell resides," explains co-author Maria Costanza Chiti.

Dolmans and her team have so far performed tests using mice tissue and follicles. But in this study, the research team turned their attention to the minute characteristics of human tissue. Biopsies taken from three women of child-bearing age were analyzed using scanning electron microscopy. The thickness of the layers and characteristics such as the stiffness of the tissue were compared with that of four different concentrations of fibrin.

"This was done to identify the fibrin formulation that best resembles the natural milieu of the human ovary in terms of architecture, porosity and rigidity," says Chiti.

The research team tested different fibrin matrix concentrations. One – which is called F50/T50 – emerged as the combination of choice in terms of ultrastructure and rigidity, as well as the way in which it closely resembles the outer layer of the human ovary.

"These combinations may mimic the physiological environment of human follicles more closely, making them good candidates for the artificial ovary prototype," says Chiti. "Such findings are essential to help us standardize fibrin matrix architecture."

###

Reference: Chiti C. et al (2017). A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity, Journal of Assisted Reproduction and Genetics DOI: 10.1007/s10815-017-1091-3

Media Contact

Stella Müller
[email protected]
49-622-148-78414
@SpringerNature

http://www.springer.com

http://www.springer.com/gp/about-springer/media/research-news/all-english-research-news/scientists-develop-new-artificial-ovary-prototype/15302302

Related Journal Article

http://dx.doi.org/10.1007/s10815-017-1091-3

Share12Tweet8Share2ShareShareShare2

Related Posts

PD-1 Inhibitors Enhance Outcomes After CD19 CAR-T

November 9, 2025

Building Inclusive Retirement Home Policies: A Study

November 9, 2025

Desmopressin’s Role in Renal Biopsy Bleeding Outcomes

November 9, 2025

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PD-1 Inhibitors Enhance Outcomes After CD19 CAR-T

Building Inclusive Retirement Home Policies: A Study

Desmopressin’s Role in Renal Biopsy Bleeding Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.