• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop method to warn of toxic algae blooms before they develop

Bioengineer by Bioengineer
December 26, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Toxic algae blooms in lakes and reservoirs are highly destructive, resulting in fish kills and toxicity risks to wildlife, livestock — and even humans. But their development is difficult to predict. Resource managers would like to stop such events in their tracks, before blooms cross a threshold and grow to the point of damaging a body of water.

A new study, published December 26 in the journal Proceedings of the National Academy of Sciences, demonstrates that automated monitoring systems that identify "regime shifts" — such as rapid growth of algae and then depletion of oxygen in the water — can successfully predict full-scale algae blooms in advance, and help resource managers avert their development. Prior studies indicated that this might be possible, but the researchers have now proven this is so during experiments in an isolated lake in Michigan. The researchers caused an algae bloom in the experimental lake by gradually enriching it with nutrients, similar to the flow of nutrients that might occur in a lake downstream of an agricultural area or city. As they did this, they also closely monitored a nearby un-enriched lake, and a third continuously enriched "reference" lake.

Once the gradually enriched experimental lake exceeded pre-set boundaries, the researchers halted the flow of nutrients. They found that algae growth quickly declined, resulting in conditions similar to those in the un-enriched lake. Meanwhile, a large algae bloom formed in the continuously enriched lake.

"Our system detected early warnings more than two weeks prior to the bloom," said University of Virginia environmental scientist Michael Pace, who led the study. "In the experiment where nutrient inputs were cut off when early warnings occurred, the algae bloom was reversed. These whole-lake experiments show that early warning systems can be used to manage algae blooms in lakes, if rapid reductions of nutrient inputs or treatments for algae are possible."

Pace noted, however, that instead of relying on early warnings, "it would be better to reduce nutrient inputs from the start so that algae blooms do not occur at all."

###

Researchers at UVA, the University of Wisconsin-Madison, Rutgers University and the Cary Institute of Ecosystem Studies conducted the study.

Media Contact

Fariss Samarrai
[email protected]
434-924-3778
@UVA

http://www.virginia.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cultivating Future Health Entrepreneurs: A Collaborative Strategy

October 28, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Advanced AI ECG Technology Enhances Detection of Severe Heart Attacks in Emergency Situations

October 28, 2025

Autistic Traits Shape Social Attention in India

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cultivating Future Health Entrepreneurs: A Collaborative Strategy

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

Advanced AI ECG Technology Enhances Detection of Severe Heart Attacks in Emergency Situations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.