• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists develop low-cost, high power density vanadium flow battery stack

Bioengineer by Bioengineer
June 11, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SHI Dingqin

The development of renewable energies such as wind energy and solar energy is limited by their inherently random and intermittent nature.

However, the vanadium flow battery (VFB) offers a cost- and energy-efficient, long-life energy storage technology that can store and smoothly output power from renewable energies.

The VFB energy storage system mainly comprises the stack, the electrolyte, and systems for pipeline, battery management and energy conversion. Among these components, the stack plays a crucial role. Therefore, increasing the stack’s power density and reducing its cost will further accelerate the industrialization of VFB technology.

A research group led by Prof. LI Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences has developed a new generation of VFB stack technology that offers low cost and high power density.

The group’s test results showed stack energy efficiency exceeding 81%. The stack ran at a constant power of 30 kW and showed no capacity decay after 100 cycles.

“The stack assembly process was improved by applying weldable, porous ionic conductive membranes that we developed,” said Prof. LI.

Laser welding technology was used in the stack assembly for the first time. It not only improved the reliability of the stack, but also achieved automation of the stack assembly, decreased the use of sealing materials, and reduced the cost of the stack.

“This new VFB stack technology not only maintains the high power density of conventional stacks, but also reduces total cost by 40% compared to conventional stacks,” said Prof. LI.

The membranes used in conventional VFB stacks are mainly commercial perfluorosulfonic acid membranes characterized by high cost and relatively poor ion selectivity.

In contrast, the weldable, porous ionic conductive membranes adopted in this new generation of VFB stack technology can improve ionic selectivity and increase the capacity retention of the electrolyte. This type of membrane costs much less than perfluorosulfonic acid membranes.

###

Media Contact
WANG Yongjin
[email protected]

Original Source

http://english.cas.cn/

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share13Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

Diverse, Lasting, and Adaptable Brain Growth Post-Preterm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.