• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists develop exciting new option for targeted cancer therapy

Bioengineer by Bioengineer
December 8, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Eoin Scanlan, Trinity College Dublin

Scientists from Trinity College Dublin have uncovered a new class of compounds – glyconaphthalimides – that can be used to target cancer cells with greater specificity than current options allow.

Cancer is difficult to treat, and many current therapies are unable to specifically target cancer cells. This is problematic for medical professionals and patients, because it limits the dose of the drug that can be safely administered, and often causes severe and debilitating side-effects.

But the Trinity scientists have now demonstrated that a class of naturally occurring enzymes — glycosidases — that are heavily overexpressed in tumour tissue can be used to trigger the release of therapeutic payloads only in the local tumour sites where they are needed.

This finding may therefore result in the development of improved targeted cancer therapies with significantly reduced side-effects for patients.

In addition to killing cancer cells, the technology may also be used to image cancer cells, with potential applications in cancer imaging and diagnosis.

Associate Professor in Chemistry at Trinity, Eoin Scanlan, led the multidisciplinary group. He said: "This is a really exciting discovery because it brings us closer to more targeted treatment of cancer. Some current therapies are limited due to the toxicity of the compounds, but our compounds are completely inactive until they are released by the enzymes that are naturally overexpressed at the tumour site. The active compound is then rapidly taken up by cancer cells."

"Our next steps will be to apply this technology to release specific anti-cancer drugs and to test it against a range of different cancer types."

###

The research was carried out in the Trinity Biomedical Sciences Institute by researcher Elena Calatrava-Pérez in collaboration with Professors Thorfinnur Gunnlaugsson, Mathias Senge, and Clive Williams. The journal article describing the work was recently published in the journal Chemical Communications.

The research was funded by Science Foundation Ireland.

Media Contact

Thomas Deane
[email protected]
353-189-64685
@tcddublin

http://www.tcd.ie/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1283 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    195 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Midwifery Skills with Virtual Reality Learning

Goat Genome Study Uncovers Genes for Adaptation

Effective Neonatal Tetanus Treatment: A Nigerian Case Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.