• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists develop elastic metal rods to treat scoliosis

Bioengineer by Bioengineer
March 23, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©NUST MISIS

NUST MISIS scientists jointly with their colleagues from the Ecole de Technologie Superiore (Montreal, Canada) have experienced a new combination of alloy processing that produces solid and durable implants that are fully compatible with the human body. The research article is published in the Journal of Alloys and Compounds.

The authors sought to develop an industrial technology for the production of metal rod stocks which are used in the production of modern bone implants, and in particular, for treatment of spinal problems.

This new generation of alloys made on the basis of Ti-Zr-Nb (titanium-zirconium-niobium) which possesses a high functional complex and so-called &laquosuperelasticity» (able to restore the original shape against large and repeated deformation) are the working material.

According to scientists, these alloys are the most promising class of metallic biomaterials. This is due to the unique combination of their biochemical and biomechanical properties: Ti-Zr-Nb differs from the complete biocompatibility of composition and high corrosion resistance, while at the same time exhibiting hyperelastic behavior – very similar to &laquonormal» bone behavior.

&laquoOur method of combined thermomechanical processing of alloys – in particular, radial-displacement rolling and rotary forging – allows researchers to get the highest quality blanks for biocompatible implants by controlling their structure and properties. Such processing of blanks gives them an outstanding resistance to fatigue and overall functional stability», said Vadim Sheremetyev, one of research authors, and a senior research associate at NUST MISIS.

According to him, the high-quality rod stocks have already found a potential customer. A large Russian manufacturer of medical products made of titanium is an industrial partner of NUST MISIS`s project. Together with them, scientists are now developing a technology to obtain beams for spinal transpedicular fixation, which should improve the therapy quality in severe cases of scoliosis.

Additionally, scientists are now aimed at developing the thermomechanical processing and optimizing technology modes to obtain materials of the necessary form and sizes with the best complexity of properties.

###

This study was made available online in 12/2017 ahead of peer-review and publication this month.

Media Contact

Lyudmila Dozhdikova
[email protected]
7-495-647-2309

http://en.misis.ru/

Original Source

http://en.misis.ru/university/news/science/2018-03/5281/ http://dx.doi.org/10.1016/j.jallcom.2017.12.119

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Blood Tests Are Transforming Spinal Cord Injury Recovery

New Assays Identify 12 Animal Species, Humans

Lactate IV Infusion Stimulates Hormone Release Linked to Post-Workout Brain Boost, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.