• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop algorithm for researching evolution of species with WGD

Bioengineer by Bioengineer
February 25, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists created an algorithm for studying the evolutionary history of species with whole-genome duplications, chiefly yeast and plants

IMAGE

Credit: Dmitry Lisovskiy, ITMO.NEWS


An international team of scientists from ITMO University and George Washington University (USA) created an algorithm for studying the evolutionary history of species with whole-genome duplications, chiefly yeast and plants.

The program can be used to analyze the genetic information about these species and make conclusions on how whole-genome duplication took place and why it secured a foothold in the process of evolution. The article was published in Oxford Bioinformatics, one of the leading titles in the field of Computer Science.

According to research by genetic scientists, some plants and even mammals have whole-genome duplications, i.e. some of their genes exist in several copies that are more or less similar to each other. ?he ancestral genome didn’t have such duplicates, but the duplication happened at some point of its evolutionary history and got a foothold in the population.

In order to understand the process of genome duplication, you have to create the so-called evolutionary history of a species with this evolutionary event. This history allows to track what happened with the population in the past and identify when exactly the duplication happened and how it got a foothold.

When attempting to create an evolutionary history with whole-genome duplications, a scientist has to face a series of tasks that are similar in their goals but have completely different mathematical structure. In order to solve them efficiently, you need optimization. For this purpose, a team that included specialists from ITMO University and the George Washington University (USA) proposed integer linear programming approach that were first proposed by Leonid Kantorovich, a Soviet mathematician, economist and the Nobel Memorial Prize in Economic Sciences.

“There’s a class of tasks that are essentially similar but different from the standpoint of mathematics, explains Nikita Alekseev, co-author of the research, ITMO University. So we’ve developed a common approach that comes down to integer linear programming. This is an optimization method that reduces a complex program to a set of linear constraints for which there exists a selection of effective solvers.”

As a result, the scientists developed a program that analyses duplicated genomes and makes presumptions on a species’ evolutionary path, the number of genome duplications that took place in that time, and how the copies of genes that emerge as result of duplication changed. Sometimes mutations take place in them, changes in specific regions, so they are no longer identical.

This approach can also be applied for studying duplicated genome regions in animals.

“Genome duplications are present in many species and can affect not just the genome as a whole but also its fragments, and our tool can be adapted for solving such problems, too,” concludes Nikita Alekseev.

###

Media Contact
Alena Gupaisova
[email protected]
7-909-160-5018

Related Journal Article

http://dx.doi.org/10.1093/bioinformatics/btaa100

Tags: Computer ScienceEvolutionGeneticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Pleiotropy to Improve Variant Discovery Accurately

Harnessing Pleiotropy to Improve Variant Discovery Accurately

October 4, 2025

Per Diem Payments: Effects on Mental Health Care Quality

October 4, 2025

New Study Reveals Metabolically Active Visceral Fat Drives Aggressiveness in Endometrial Cancer

October 4, 2025

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing Pleiotropy to Improve Variant Discovery Accurately

Per Diem Payments: Effects on Mental Health Care Quality

New Study Reveals Metabolically Active Visceral Fat Drives Aggressiveness in Endometrial Cancer

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.