• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists deliver portable total chemical analysis without pumps and tubes

Bioengineer by Bioengineer
February 24, 2024
in Chemistry
Reading Time: 3 mins read
0
New micro-TAS device at work.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have engineered a new micro total analysis system that quantifies a target chemical in a microfluidic chip without pumps, tubes, and expensive detectors. The compound reacts with other chemicals to produce a gas, pushing ink in a connected chamber along a channel. Built-in light detectors help measure the flow speed, allowing measurement of the original chemical. The portability of the new device enables bedside, quantitative clinical analysis.

New micro-TAS device at work.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have engineered a new micro total analysis system that quantifies a target chemical in a microfluidic chip without pumps, tubes, and expensive detectors. The compound reacts with other chemicals to produce a gas, pushing ink in a connected chamber along a channel. Built-in light detectors help measure the flow speed, allowing measurement of the original chemical. The portability of the new device enables bedside, quantitative clinical analysis.

 

Microfluidics is a revolutionary technology delivering precision chemistry with vastly less chemicals. By etching thin channels and chambers into a compact chip that can fit into the palm of your hand, chemistry can be done with microliter amounts of liquid in a vastly parallelized array of reaction conditions, saving time, cost, and the environment. More recently, the quantitative detection of chemicals is also being incorporated into these miniature devices. These micro total analysis systems (micro-TAS) promise a complete chemical analysis that leverages all the benefits of microfluidics.

However, to drive flow around channels and chambers, microfluidics requires pumps, tubes to couple flow into channels, as well as expensive light sources and detectors to directly measure the optical signals that tell us how much of different chemicals are in our channels. This makes a method based on miniaturization and portability far less wieldy than originally proposed.

But now, a team led by Associate Professor Hizuru Nakajima from Tokyo Metropolitan University has come up with a whole new quantitation method that can get rid of the extra hardware altogether. They came up with a system where some compound of interest (analyte) produces a gas; the more analyte there is, the faster the gas is produced. This overpressure helps drive ink along a connected channel. As the ink flows along, it blocks room light reaching two organic photodetectors (OPDs) printed along the channel, helping to measure the flow speed. Since the light need only be blocked by a dark ink, the detection required is inexpensive and simple. Since flow is driven by gas production, there are no pumps, and no tubes.

They demonstrated their system by measuring the amount of C-reactive protein (CRP), a protein associated with an immune system response. Firstly, a CRP containing solution is added to a small chamber; the more CRP there is, the more attach to the specially treated walls of the chamber. Nanoparticles coated with CRP antibodies and catalase are then added; the more CRP there is, the more nanoparticles and catalase are left on the walls. When hydrogen peroxide is added, the catalase helps produce oxygen, completing the loop between analyte (in this case, CRP) and ink flow.

The team demonstrated that CRP concentration in human serum could be accurately detected, even in the presence of common proteins like immunoglobulin G (IgG) and human serum albumin. There was also good agreement with commonly available, far more hardware intensive methods. Given that the team’s new chip is easily portable, they believe it will see more application of micro-TAS in clinical diagnosis by the bedside or environmental analysis in the field.

This work was supported by JSPS KAKENHI Grant Numbers 21H03578 and 22K14709, the Tokyo Metropolitan Government, and the Tokyo Metropolitan Government Infectious Disease Research Project.



Journal

Microchimica Acta

DOI

10.1007/s00604-023-06108-z

Article Title

Development of a C‑reactive protein quantification method based on flow rate measurement of an ink solution pushed out by oxygen gas generated by catalase reaction

Article Publication Date

13-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Pediatric Radiology Education: Our Observership Insights

Evaluating Lung Function in Cystic Fibrosis: MRI Methods

Hope for Sahara Killifish’s Rediscovery in Algeria!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.