• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists create magno-optomechanical hybrid system with wide tuning range

Bioengineer by Bioengineer
January 12, 2023
in Chemistry
Reading Time: 2 mins read
0
Schematic of the hybrid system that combines controlled phonons, magnons, and photons (image by SHEN Zhen et al.)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Different quantum systems, including rare-earth-ion-doped crystals, superconducting circuits, and spins in yttrium iron garnet (YIG) or diamond, have their unique type of quantum operation.

Schematic of the hybrid system that combines controlled phonons, magnons, and photons (image by SHEN Zhen et al.)

Credit: \

A research team headed by Academician GUO Guangcan and Prof. DONG Chunhua from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has made progress in magno-optomechanical hybrid system. They developed a hybrid system supporting the coherent coupling between an optomechanical cavity and a magnomechanical cavity though straightway physical contact, achieving a microwave-to-optical conversion. The result was published in Physics Review Letters.

Different quantum systems, including rare-earth-ion-doped crystals, superconducting circuits, and spins in yttrium iron garnet (YIG) or diamond, have their unique type of quantum operation.

In a previous research, the team realized a tunable frequency conversion between microwave and photons utilizing the dynamical Faraday effect in a YIG microsphere. 

However, both the implementation of cavity optomagnonics and most optomechanical systems have weaknesses, with the former having limited magneto-optical interaction strength while the latter demonstrating limited practical applications due to a lack of tunability.

In this research, the team developed a system consisting of an optomechanical cavity consisted of silica microsphere and a magnomechanical cavity consisted of YIG microsphere. Photons could be electrically manipulated through magnetostriction effect or optically manipulated through optical radiation pressure. Furthermore, photons in different microcavities could be coherently coupled through direct physical contact.

Based on the high quality optical measurement of the mechanical state of the system, researchers achieved a microwave-to-optical conversion with an ultrawide tuning range, far exceeding that of the previous magneto-optical single system.

In addition, the team observed a mechanical motion interference, in which the optically induced motion of the mechanical resonator is canceled by microwave-driven coherent motion.

In the future, this hybrid system that combines controlled phonons, magnons, and photons is expected to be applied in signal transduction and sensing.



Journal

Physical Review Letters

DOI

10.1103/PhysRevLett.129.243601

Article Title

Coherent coupling between phonons, magnons, and photons

Article Publication Date

9-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

September 19, 2025
Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Collaborating on European Data Science for Seniors

Climate Change Vulnerability Among Farmers in Can Tho

Intraoperative Ventilation Approaches for Thoracic Surgery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.