• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists at EMBL Heidelberg discover how ancient ‘relaxant-inflammatory’ molecules get sponges (and blood vessels) moving

Bioengineer by Bioengineer
January 25, 2024
in Biology
Reading Time: 3 mins read
0
Sponge deflation under microscope
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Did you know that sponges can move? While not exactly the champions of underwater acrobatics, sponges exhibit coordinated movements — despite not having muscles or neurons. EMBL Heidelberg’s Arendt Group, in collaboration with the Savitski Team and the Prevedel Group, along with collaborators from the University of Heidelberg, and Yale University, has revealed surprising facts that not only shed light on sponge movement, but also on the evolution of blood vessels in humans and other animals.

Sponge deflation under microscope

Credit: Credit: Ling Wang, Anniek Stokkermans, Fabian Ruperti, Holly Joynes/EMBL. Adapted from: Current Biology

Did you know that sponges can move? While not exactly the champions of underwater acrobatics, sponges exhibit coordinated movements — despite not having muscles or neurons. EMBL Heidelberg’s Arendt Group, in collaboration with the Savitski Team and the Prevedel Group, along with collaborators from the University of Heidelberg, and Yale University, has revealed surprising facts that not only shed light on sponge movement, but also on the evolution of blood vessels in humans and other animals.

“I was intrigued when I learned that sponges actually move and that the molecular and cellular basis of sponge movement was so far largely unknown,” said Fabian Ruperti, PhD student in the Arendt Group and first author of the study. “As a biochemist, I was excited to tackle this question by combining new tools such as functional proteomics with the world of non-model species.”

Sponge movement relies on a system of densely branched water canals inside their body. When some of the canals close and the water gets flushed out, the sponge makes a whole-body movement, which until now, was believed to be caused by contraction of the cells lining the canals. The new findings show that this movement has actually more to do with relaxation and ‘deflation’ of the water canals, akin to the deflation of a balloon.

To dive deeper into the molecular and cellular mechanism of the sponge deflation, the scientists used advanced microscopy, pharmacology, single-cell sequencing, and several new proteomics techniques. They saw that what gets the sponge moving is the relaxation of stress fibres inside the cells of the canals, which is in turn triggered by an evolutionarily ancient inflammation-like molecular mechanism. Notably, the very same mechanism also regulates the contraction of the blood vessels of humans and other vertebrates, an important determinant of blood pressure.

“We learn that responses such as vascular relaxation and inflammation are not restricted to us, but instead occur in our very remote cousins, the sponges,” said Group Leader Detlev Arendt. “These processes must have evolved in the context of a challenge that is relevant not only for us, but also for many other animals. That means, we can only understand the structure and function of these systems in the context of evolution.”

 

Related:

  • More than a gut reaction: What sponges can tell us about the evolution of the brain https://www.embl.org/news/science/more-than-a-gut-reaction/

 

About EMBL

The European Molecular Biology Laboratory (EMBL) is Europe’s life sciences laboratory. We provide leadership and coordination for the life sciences across Europe, and our world-class fundamental research seeks collaborative and interdisciplinary solutions for some of society’s biggest challenges. We provide training for students and scientists, drive the development of new technology and methods in the life sciences, and offer state-of-the-art research infrastructure for a wide range of experimental and data services.

EMBL is an intergovernmental organisation with 29 member states, one associate member state, and one prospect member state. At our six sites in Barcelona, Grenoble, Hamburg, Heidelberg, Hinxton near Cambridge, and Rome, we seek to better understand life in its natural context, from molecules to ecosystems.

Follow EMBL at:

https://twitter.com/EMBL

https://www.linkedin.com/company/embl/

https://www.facebook.com/pg/embl.org/posts/

https://www.instagram.com/embl_org/



Journal

Current Biology

DOI

10.1016/j.cub.2023.12.021

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response.

Article Publication Date

4-Jan-2024

COI Statement

M.N. is the founder of bionic consulting Dr. Michael Nickel.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025
Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025

Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

October 8, 2025

Captive Bears and Pandas Exhibit Distinct Gut Microbiomes, with Giant Pandas Showing Reduced Microbial Diversity Compared to Wild Populations

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1131 shares
    Share 452 Tweet 282
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chitosan Nanofibers Boost Wound Healing in Rats

Mendelian Randomization Study Identifies PAM in Type 2 Diabetes

Somatic Mutation and Selection Across Populations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.