• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientist to study biomarkers of brain region variation important to neuropsychiatric disorders

Bioengineer by Bioengineer
October 10, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

San Antonio, Texas (Oct. 10, 2017) – Neuropsychiatric disorders like bipolar disorder, major depressive disorder, schizophrenia, post-traumatic stress disorder, and Alzheimer's and Parkinson's diseases are often correlated with changes in the size and shape of the brain. Texas Biomedical Research Institute Associate Scientist Melanie Carless, Ph.D., has been funded by the National Institute of Mental Health, part of the National Institutes of Health, to identify microRNA biomarkers in the blood and cerebrospinal fluid (clear fluid in the brain and spinal cord) that are associated with these changes in the brain, using a non-human primate model.

"These biomarkers may reveal something about how neuropsychiatric diseases develop," Dr. Carless explained.

The 2-year, $521,848 project focuses on microRNAs, which are small molecules that influence gene and protein expression. MicroRNAs can be packaged inside exosomes, small vesicles that are secreted by different organs and tissues, and transported by blood and cerebrospinal fluid. By studying easily accessible peripheral tissues, such as blood, researchers can gain insight into changes that might be occurring within the brain.

In the first part of the project, Dr. Carless will validate the findings of previous research investigating blood microRNAs associated with changes in brain structure in humans. She plans to use baboons, which are similar to humans in many respects, to identify correlations between microRNAs in the blood or cerebrospinal fluid and structural variation in the brain.

The baboons in the study will include young and old animals as well as animals predisposed to epilepsy or cognitive deficits. Their brains will be measured with magnetic resonance imaging. Dr. Carless will extract microRNAs from the blood and cerebrospinal fluid to assess correlations with brain changes.

In the second part of the project, Dr. Carless will study microRNAs inside the brain regions of interest, such as the amygdala and hippocampus, to see if expression of brain microRNAs are correlated with those in blood and cerebrospinal fluid.

"If the blood and brain microRNA profiles are correlated, that gives you an indication that those microRNAs are not just easy to detect peripherally, but might also be important in disease pathology," Dr. Carless said.

Correlating blood and brain microRNAs is important for matching up blood-based studies with tissue-based studies in humans. Studies on post-mortem human brain tissues are constrained by small sample sizes (and limited statistical power to detect significant effects). In contrast, in living populations, it is possible to collect blood samples from thousands of individuals, but difficult to study brain tissue directly. These baboon studies are the key for linking changes in the blood and in the brain tissue and may indicate the potential of baboons for preclinical studies of neuropsychiatric diseases.

Dr. Carless envisions that these studies will establish baboons as a better model for testing novel neuropsychiatric treatments. Currently, the success rate for clinical trials of neuropsychiatric drugs hovers around only 8 percent, and the high failure rate is attributed in part to inadequate preclinical models. These baboon studies could bridge that gap, ultimately accelerating the development and FDA-approval process of novel treatments.

###

The project is being fully supported by the National Institute of Mental Health of the NIH under Award Number R21MH114154.

Texas Biomed is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Texas Biomed partners with hundreds of researchers and institutions around the world to develop diagnostics, therapeutics and vaccines against pathogens causing AIDS, hepatitis, tuberculosis, hemorrhagic fevers and parasitic diseases responsible for malaria and schistosomiasis. The Institute also has programs in the genetics of cardiovascular disease, diabetes, obesity, psychiatric disorders and other diseases. For more information on Texas Biomed, go to http://www.TxBiomed.org.

Media Contact

Lisa Cruz
[email protected]
210-258-9437
@txbiomed

Home

https://www.txbiomed.org/news-press/news-releases/brain-region-biomarker-study/

Share12Tweet7Share2ShareShareShare1

Related Posts

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025
Pond Management Strategies Could Boost Native Salamander Conservation

Pond Management Strategies Could Boost Native Salamander Conservation

November 4, 2025

New Study Explores the Impact of Mucus Plugs in COPD Development

November 4, 2025

Angelica gigas Nakai Heals PCOS: Network Pharmacology Insights

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.