• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientist emphasizes importance of multi-level thinking

Bioengineer by Bioengineer
August 17, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Institute of Atmospheric Physics, Chinese Academy of Sciences

An unusual paper "On multi-level thinking and scientific understanding" appears in the October issue of Advances in Atmospheric Sciences. The author is Professor Michael Edgeworth McIntyre from University of Cambridge, whose work in atmospheric dynamics is well known. He has also had longstanding interests in astrophysics, music, perception psychology, and biological evolution.

The paper touches on a range of deep questions within and outside the atmospheric sciences. They include insights into the nature of science itself, and of scientific understanding — what it means to understand a scientific problem in depth — and into the communication skills necessary to convey that understanding and to mediate collaboration across specialist disciplines.

The paper appears in a Special Issue arising from last year's Symposium held in Nanjing to commemorate the life of Professor Duzheng YE, who was well known as a national and international scientific leader and for his own wide range of interests, within and outside the atmospheric sciences. The symposium was organized by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, where Prof. YE had worked nearly 70 years before he passed away. Upon the invitation of Prof. Jiang ZHU, the Director General of IAP, also the Editor-in-Chief of Advances in Atmospheric Sciences (AAS), Prof. McIntyre agreed to contribute a review paper to an AAS special issue commemorating the centenary of Duzheng YE's birth. Prof. YE was also the founding Editor-in-Chief of this journal.

One of Professor McIntyre's themes is that we all have unconscious mathematics, including Euclidean geometry and the calculus of variations. This is easy to demonstrate and is key to understanding not only how science works but also, for instance, how music works. Indeed, it reveals some of the deepest connections between music and mathematics, going beyond the usual remarks about number-patterns. All this revolves around the biological significance of what Professor McIntyre calls the "organic-change principle".

Further themes include the scientific value of looking at a problem from more than one viewpoint, and the need to use more than one level of description. Many scientific and philosophical controversies stem from confusing one level of description with another, for instance applying arguments to one level that belong on another. This confusion can be especially troublesome when it comes to questions about human biology and human nature, and about what Professor YE called multi-level "orderly human activities".

Related to all these points are the contrasting modes of perception and understanding offered by the brain's left and right hemispheres. Our knowledge of their functioning has progressed far beyond the narrow clichés of popular culture, thanks to recent work in the neurosciences. The two hemispheres automatically give us different levels of description, and complementary views of a problem. Good science takes advantage of this. When the two hemispheres cooperate, with each playing to its own strengths, our problem-solving is at its most powerful.

The paper ends with three examples of unconscious assumptions that have impeded scientific progress in the past. Two of them are taken from Professor McIntyre's main areas of research. A third is from biology.

###

Media Contact

Zheng Lin
[email protected]
86-108-299-5053
@aasjournal

http://english.iap.cas.cn/

Original Source

https://link.springer.com/article/10.1007/s00376-017-6283-3 http://dx.doi.org/10.1007/s00376-017-6283-3

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

LINC-PINT Polymorphisms Influence HNSCC Risk in Chinese Han

September 16, 2025
2025 Blavatnik Regional Awards Celebrate Exceptional Postdoctoral Researchers

2025 Blavatnik Regional Awards Celebrate Exceptional Postdoctoral Researchers

September 16, 2025

Unique Leaf Galls Found on Epiphytic Fern

September 16, 2025

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predictive Model for HCC Metastasis After TACE

Remote Functional Performance Tests: Reliability for Fall-Prone Seniors

LINC-PINT Polymorphisms Influence HNSCC Risk in Chinese Han

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.