• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 23, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Science snapshots — Waste to fuel, moire superlattices, mining cellphones for energy data

Bioengineer by Bioengineer
October 10, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Marilyn Chung/Berkeley Lab


Trash to Treasure: Scientists Convert Municipal Waste to Biofuel Precursors



By Emily Scott

As the need for energy security grows, scientists are investigating nonfood biomass sources that can be used to create valuable biofuels and bioproducts. Among these sources is municipal solid waste (MSW) — in other words, trash that’s produced every day around the world in significant amounts.

In a new study published in the journal ChemSusChem, researchers at Berkeley Lab created six blends that combined MSW items (non-recyclable paper and grass clippings) with biomass (corn stover and switchgrass). Using an ionic liquid-based process, they converted these blends into methyl ketones, which are chemical compounds that can be used as diesel fuel precursors.

This is the first report on the conversion of MSW to methyl ketones using an ionic liquid process, an efficient biomass pretreatment process that is becoming more sustainable. The research was a collaboration between the Joint BioEnergy Institute and the Advanced Biofuels and Bioproducts Process Development Unit (both established by the Department of Energy and based at Berkeley Lab), where researchers scaled up one of these blends 30-fold and are currently attempting to scale up the process even further.

“The ionic liquid-based conversion represents an efficient and more environmentally friendly process for biomass upgrading,” said Berkeley Lab researcher Ning Sun, the study’s corresponding author. “This opens the door to building biorefinery facilities that use diversified feedstocks to produce a range of chemicals.”

Simple Materials Offer a Peek into the Quantum Realm



By Aliyah Kovner

As reported in Nature Physics, a Berkeley Lab-led team of physicists and materials scientists was the first to unambiguously observe and document the unique optical phenomena that occur in certain types of synthetic materials called moire; superlattices. The new findings will help researchers understand how to better manipulate materials into light emitters with controllable quantum properties.

Moire; superlattices are made by layering sheets of single-atom-thick materials on top of one another in precise configurations to create a larger and more complex overall pattern. In these arrangements, the otherwise simple composite materials display intriguing behavior.

For example, recent studies from the same team showed that moire; superlattices made with three layers of graphene sandwiched in between layers of boron nitride can act as an exotic insulator and a high-temperature superconductor.

In the current study, Berkeley Lab graduate student researcher Emma Regan and her colleagues used two highly sensitive spectroscopy approaches to examine the excitons (bound pairs of electrons and electron-holes, which occur in semiconductive materials) across the layers of a moire; superlattice formed by tungsten disulfide and tungsten diselenide.

“Our work provides needed clarity on how the excitons in moire; superlattices can exist in different states,” said Regan. “And now we know a straightforward way to create perfect arrays of interlayer excitons with distinct optical properties, which can serve as light emitters in next-generation electronic devices.”

Can Cellphones Help Cities Be More Energy Efficient?



By Linda Vu

Buildings currently consume about 40% of all the electricity used in the United States, most of them located in urban areas that are growing rapidly. Because electricity generation is the largest source of greenhouse gas emissions in the country, making urban buildings more energy efficient could help mitigate global climate change.

In order to achieve efficient buildings at a city-wide scale, accurate occupancy estimations are crucial. These estimates need to take into account the fact that people move around their cities throughout the day, from home to work, which drives energy consumption for different building types. Now, a model developed by researchers from Berkeley Lab, UC Berkeley, and MIT can do just that. A paper describing the tool, which uses passively collected cellphone data to improve urban scale building occupancy and mobility estimates, was recently published in Nature Communications.

“Understanding building occupancy at an urban-scale allows us to plan better for collective energy use. Like traffic apps that tell you the current state of road congestion, we envision a model that could potentially tell users what the energy demands are in different places and therefore identify bespoke efficiency measures,” said Berkeley Lab scientist Marta Gonzalez, who is also a UC Berkeley professor of Civil and Environmental Engineering and co-author of the paper. “The tool could also potentially connect to smart-devices that automatically adjust to the energy demand.”

Read the full article from Berkeley Engineering here.

###

Media Contact
Laurel Kellner
[email protected]
510-590-8034

Tags: BiochemistryChemistry/Physics/Materials SciencesComputer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Route to Strychnos Alkaloids via Thiophene Cycloadditions

January 23, 2026
Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nursing Students: Well-Being, Helpfulness, and Tolerance Link

Annual Cerebral Palsy Trends and Risk Factors

Assessing Inhibitory Control in Black-Tailed Gulls

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.