• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Science snapshots: A toxin antidote in frogs, atomic motion in 4D, and better biofuels

Bioengineer by Bioengineer
June 26, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alexander Tokarev/UCLA

A Frog Worth Kissing: Natural Defense Against Red Tide Toxin Found in Bullfrogs



By ALIYAH KOVNER

A team led by Berkeley Lab faculty biochemist Daniel Minor has discovered how a protein produced by bullfrogs binds to and inhibits the action of saxitoxin, the deadly neurotoxin made by cyanobacteria and dinoflagellates that causes paralytic shellfish poisoning.

The findings, published this week in Science Advances, could lead to the first-ever antidote for the compound, which blocks nerve signaling in animal muscles, causing death by asphyxiation when consumed in sufficient quantities.

“Saxitoxin is among the most lethal natural poisons and is the only marine toxin that has been declared a chemical weapon,” said Minor, who is also a professor at the UCSF Cardiovascular Research Institute. About one thousand times more potent than cyanide, saxitoxin accumulates in tissues and can therefore work its way up the food chain – from the shellfish that eat the microbes to fish, turtles, marine mammals, and us.

Minor and his colleagues elucidated the mechanism of the protective protein, called saxiphilin, by mapping the atomic structure of free saxiphilin and saxitoxin-bound saxiphilin using high-resolution X-ray crystallography performed at Berkeley Lab’s Advanced Light Source.

“Climate change is making blooms of toxic algae more common,” said Minor. “Understanding how frogs have developed molecules that help them to resist toxic environments holds important lessons that could help us have a defense at the ready. “

To learn more about this research, read the full UCSF News Article

Scientists Capture Atomic Motion in 4D for the First Time



Adapted from a story by WAYNE LEWIS

Everyday transitions from one state of matter to another – such as freezing, melting, or evaporation – start with a process called “nucleation,” in which tiny clusters of atoms or molecules (called “nuclei”) begin to coalesce. Nucleation plays a critical role in circumstances as diverse as the formation of clouds and the onset of neurodegenerative disease.

Scientists have gained a never-before-seen view of nucleation – capturing how the atoms rearrange at 4D atomic resolution (that is, in three dimensions of space and across time). The findings, published in the journal Nature, differ from predictions based on the classical theory of nucleation that has long appeared in textbooks.

The UCLA-led team, which includes collaborators from Berkeley Lab, used a state-of-the-art electron microscope located at the Molecular Foundry. In much the same way a CAT scan generates a 3D X-ray of the human body, atomic electron tomography uses electrons to create stunning 3D images of atoms within a material as the sample is rotated under the microscope.

“Nucleation is basically an unsolved problem in many fields,” said co-author Peter Ercius, a staff scientist at Berkeley Lab’s Molecular Foundry. “Once you can image something, you can start to think about how to control it.”

Scientists Find a Molecular Switch for Better Biofuels



Adapted from a story by ANNE STARK

Plant cell walls contain a renewable, nearly-limitless supply of sugar that can be used as a carbon source for microbe-based chemical and biofuel production. However, retrieving these sugars isn’t all that easy.

Imidazolium ionic liquid (IIL) solvents are some of the best agents for extracting sugars from plants. But the sugars from IIL-treated biomass are inevitably contaminated with residual IILs that inhibit growth in bacteria and yeast, blocking biochemical production by these organisms.

Lawrence Livermore National Laboratory (LLNL) scientists and collaborators at the Joint BioEnergy Institute have identified a molecular mechanism in bacteria that can be manipulated to promote IIL tolerance, and therefore overcome a key roadblock in biofuel and biochemical production processes. The research appears in the Journal of Bacteriology.

According to lead author and LLNL biologist Michael Thelen, the team discovered that two bacillus strains and one mutant E. coli strain can withstand high levels of two widely used IILs thanks to special membrane pumps that transport the toxic solvents out of cells.

“Our results demonstrate the critical roles that transporter genes and their genetic controls play in IIL tolerance in their native bacterial hosts,” Thelen said. “This is another step toward engineering IIL tolerance into industrial strains.”

Read the full release from LLNL

###

Media Contact
Aliyah Kovner
[email protected]

Tags: Agricultural Production/EconomicsBiochemistryBiologyCell BiologyMolecular PhysicsNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Bezos Earth Fund Awards $2M to UC Davis and American Heart Association to Pioneer AI-Designed Foods

October 24, 2025
Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

Organocatalytic Intramolecular Macrocyclization of Quinone Methylidenes with Alcohols Achieves Enantio-, Atropo-, and Diastereoselectivity

October 24, 2025

Breakthrough Discovery of Elusive Solar Waves That May Energize the Sun’s Corona

October 24, 2025

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IQ Estimates in Fragile X: Abbreviated vs. Full-Scale

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

Evidence-Based Model for Public Health Nursing in Japan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.