• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Saving lives with platypus milk

Bioengineer by Bioengineer
March 15, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laura Romin and Larry Dalton.

A breakthrough by Australian scientists has brought the introduction of an unlikely hero in the global fight against antibiotic resistance a step closer; the humble platypus.

Due to its unique features – duck-billed, egg-laying, beaver-tailed and venomous- the platypus has long exerted a powerful appeal to scientists, making it an important subject in the study of evolutionary biology.

In 2010 scientists discovered that platypus milk contained unique antibacterial properties that could be used to fight superbugs.

Now a team of researchers at Australia's national research agency, the Commonwealth Scientific and Industrial Research Oganisation (CSIRO), and Deakin University have solved a puzzle that helps explain why platypus milk is so potent – bringing it one step closer to being used to save lives.

The discovery was made by replicating a special protein contained in platypus milk in a laboratory setting.

"Platypus are such weird animals that it would make sense for them to have weird biochemistry," CSIRO scientist and lead author on the research published in Structural Biology Communications, Dr Janet Newman said.

"The platypus belongs to the monotreme family, a small group of mammals that lay eggs and produce milk to feed their young. By taking a closer look at their milk, we've characterised a new protein that has unique antibacterial properties with the potential to save lives."

As platypus don't have teats, they express milk onto their belly for the young to suckle, exposing the mother's highly nutritious milk to the environment, leaving babies susceptible to the perils of bacteria.

Deakin University's Dr Julie Sharp said researchers believed this was why the platypus milk contained a protein with rather unusual and protective antibacterial characteristics.

"We were interested to examine the protein's structure and characteristics to find out exactly what part of the protein was doing what," she said.

Employing the marvels of molecular biology, the Synchrotron, and CSIRO's state of the art Collaborative Crystallisation Centre (C3), the team successfully made the protein, then deciphered its structure to get a better look at it.

What they found was a unique, never-before-seen 3D fold.

Due to its ringlet-like formation, the researchers have dubbed the newly discovered protein fold the 'Shirley Temple', in tribute to the former child-actor's distinctive curly hair.

Dr Newman said finding the new protein fold was pretty special.

"Although we've identified this highly unusual protein as only existing in monotremes, this discovery increases our knowledge of protein structures in general, and will go on to inform other drug discovery work done at the Centre," she said.

In 2014 the World Health Organisation released a report highlighting the scale of the global threat posed by antibiotic resistance, pleading for urgent action to avoid a "post-antibiotic era", where common infections and minor injuries which have been treatable for decades can once again kill.

The scientists are seeking collaborators to take the potentially life-saving platypus research to the next stage.

###

Background:

Antimicrobial resistance occurs when bacteria that were once responsive to antimicrobial treatments like antibiotics build up a resistance and then pass that resistance on to their next generation. This leads to ineffective treatments and more persistent infections, caused by these resistant 'Superbugs'.

Media Contact

Ali Green
[email protected]
61-395-458-098
@csironews

http://www.csiro.au

Original Source

http://www.csiro.au/en/News

Share12Tweet7Share2ShareShareShare1

Related Posts

Key Genes Drive Organic Acid Accumulation in Cherry

Key Genes Drive Organic Acid Accumulation in Cherry

August 25, 2025
blank

Introducing a Breakthrough Tool to Monitor Infant Development Beginning at Just 16 Days Old

August 25, 2025

Genetic Diversity in Nile Tilapia: A Conservation Review

August 25, 2025

Flamingos Unlock the Secret to Longevity, New Study Finds

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improved Stroke Outcomes for Older Patients in Collaborative Care

Identifying Late-Onset Sepsis Markers in Pediatric ICU

Common Painkillers Found to Promote Antibiotic Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.