• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 22, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Saturn’s moon Mimas, a snowplough in the planet’s rings

Bioengineer by Bioengineer
June 11, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cassini, Dante, Baillié and Noyelles

The Solar System’s second largest planet both in mass and size, Saturn is best known for its rings. These are divided by a wide band, the Cassini Division, whose formation was poorly understood until very recently. Now, researchers* from the CNRS, the Paris Observatory – PSL and the University of Franche-Comté have shown that Mimas, one of Saturn’s moons, acted as a kind of remote snowplough, pushing apart the ice particles that make up the rings. The findings are the result of two studies supported by the International Space Science Institute and CNES, the French space agency, published simultaneously in June 2019 in Monthly Notices of the Royal Astronomical Society.

Saturn’s rings are made up of ice particles whose orbital velocity increases the closer they are to the planet. The Cassini Division is a wide, dark band located between Saturn’s two most visible rings, in which the particle density is considerably lower than that inside the rings. The researchers suspected a link between Mimas, one of Saturn’s moons, and the band, since there is a region at the inner edge of the Division where the particles orbit around Saturn exactly twice as fast as Mimas. This phenomenon, known as orbital resonance, pushes the ice particles apart, producing a relatively narrow gap. Scientists from CNRS, the Paris Observatory – PSL and the University of Franche-Comté have now shown that Mimas may have moved closer to Saturn in the recent past, making the moon a kind of remote snowplough that widened the initial gap, giving it the 4500 km width it has today. If on the other hand the orbit of Mimas moved outwards, the particles would return to their original position, rather as if a snowplough were to reverse and stop pushing the snow, letting it spread out again. Using numerical simulations, the researchers calculated that Mimas must have migrated inwards by 9000 km over a few million years in order to open up the 4500 km gap that currently makes up the Cassini Division.

A natural satellite, such as the Moon, normally tends to move away from its planet rather than closer to it. In order to migrate inwards, a moon has to be able to lose energy, particularly by heating up, which would cause its internal ice to melt and weaken its outer crust. However, the state of Mimas’ surface, which still bears the scars of relatively ancient meteorite impacts, does not tally with such a scenario. The researchers’ second hypothesis, which remains to be confirmed, is that the loss of heat was shared out between Mimas and Enceladus, another of Saturn’s moons, through orbital resonance. This would have caused the creation of the internal oceans that the Cassini spacecraft detected below the surface of both these bodies.

Today, Mimas has begun to migrate outwards again. According to the researchers’ calculations, the Cassini Division is likely to take around 40 million years to close up again. Thanks to these findings, scientists may view the presence of gaps in the rings of an exoplanet as a clue that it could have moons with oceans.

###

*The researchers belong to the Institut de Mécanique Céleste et de Calcul des Éphémérides (Observatoire de Paris – PSL / CNRS), Institut UTINAM (CNRS / Université de Franche-Comté), Institut de Physique du Globe de Paris (CNRS / Université de Paris / IPGP / IGN), Laboratoire de Planétologie et Géodynamique (Université de Nantes / CNRS / Université d’Angers), Namur Institute for Complex Systems (Université de Namur), and the Jet Propulsion Laboratory (NASA).

Media Contact
Maxime DOS SANTOS
[email protected]

Original Source

https://www.cnrs.fr/en/saturns-moon-mimas-snowplough-planets-rings

Tags: AstrophysicsPlanets/MoonsSatellite Missions/ShuttlesSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

Lithium Metal Powers Electrochemical PFAS Reduction Breakthrough

January 20, 2026

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    79 shares
    Share 32 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Athlete Models in Sports Fluid Dynamics

Two-Year Outcomes of 3D-Printed Vertebral Implants

Comparing COPD Treatments: FF/1 UMEC/VI vs. BUD/GLY/FORM

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.