• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Same species, different sizes: rare evolution in action spotted in island bats

Bioengineer by Bioengineer
April 22, 2024
in Biology
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Melbourne researcher has spotted a rare evolutionary phenomenon happening rapidly in real time in bats living in the Solomon Islands.

Comparison of bat body size

Credit: Tyrone Lavery

A University of Melbourne researcher has spotted a rare evolutionary phenomenon happening rapidly in real time in bats living in the Solomon Islands.

Dr Tyrone Lavery reports in a paper published in Evolution that two groups of leaf-nosed bats with vastly different body sizes that were thought to be separate species are an example of a rare type of parallel evolution. Parallel evolution is when different populations living in similar environments evolve similar features independently.

The smaller bat, Hipposideros diadema, is found across its six main islands and many smaller islands. It is also common in South East Asia, Papua New Guinea and parts of northern Australia. The much larger bats were named in 1905 as H. dinops, or Fierce Leaf-Nosed Bat, and are found only in the Solomon Islands. The two sizes live together on most islands, which all have similar forested habitat.

“Although they are very different sizes, the bats’ DNA is very similar. They use very different sonar frequencies, they probably eat different food, and even when they live in the same cave together they don’t interbreed. That is why no one has ever really questioned whether they were different species,” Dr Lavery said.

Dr Lavery said despite their independent origins, each group of larger bats has evolved to look the same, averaging more than double the weight of the small bat. “Our research suggests the rapid and repeated evolution of larger bodied bats from smaller bats, each happening independently on separate islands,” he said.

“When we created family trees using the bats’ DNA, we found that what we thought was just one species of large bat in the Solomon Islands was actually a case where bigger bats had evolved from the smaller species multiple times across different islands,” he said.

This type of parallel evolution arising from separated populations of the same species has only been observed in action a few times before and is believed to be the first time it has been documented in real time in mammals.

Parallel evolution has been found in parts of the world when populations are geographically separated but live in similar environments – such as different islands or lakes. One common type of parallel evolution is convergent evolution. For example thylacines and wolves are two separate species with different origins that evolved separately to look similar. But Dr Lavery said it was rare to see two isolated populations of the same species go through the same evolutionary process.

“Something very strong is pushing or selecting for these big bats, and it is strong enough for it to happen multiple times on different islands. We think these larger bats might be evolving to take advantage of prey that the smaller bats aren’t eating. Although they could probably interbreed, they don’t for some reason,” he said.

Across the islands, the sonar frequencies of larger bats are lower and suited to hunting bigger prey, while the smaller bats use a higher frequency. This probably means the larger bats are eating larger insects, or even frogs, Dr Lavery said.

Measuring 103 bat specimens from the Australian Museum, Queensland Museum, University of Kansas Natural History Museum, and the Bernice Pauahi Bishop Museum in Hawaii, Dr Lavery also found no overlap in body size between the two groups – the smaller “species” was always easily identified from the larger bats.

“Over time larger body size may have been part of behavioural and physical adaptations needed to hunt larger prey. This might mean the bigger and smaller bats no longer recognise each other as mates, and so they live separate lives.”

Dr Lavery said this parallel evolution pattern in leaf-nosed bats had been observed in Solomon Islands on Guadalcanal and in the Western Province, and more research was needed to see if the same pattern was repeated on other islands.

“We may think of evolution as very slow process, but it can happen rapidly when the conditions are right and two groups are separated and stop interbreeding. They can begin to evolve on different pathways,” he said.

“Islands are famous for helping us to observe and understand the processes for how species evolve in real time. They’re also places that are very vulnerable to the types of disturbance created by humans create. It’s important that we look after these incredible landscapes in Solomon Islands before we lose these stories even before we find them.”

A University of Melbourne researcher has spotted a rare evolutionary phenomenon happening rapidly in real time in bats living in the Solomon Islands.

Dr Tyrone Lavery reports in a paper published in Evolution that two groups of leaf-nosed bats with vastly different body sizes that were thought to be separate species are an example of a rare type of parallel evolution. Parallel evolution is when different populations living in similar environments evolve similar features independently.

The smaller bat, Hipposideros diadema, is found across its six main islands and many smaller islands. It is also common in South East Asia, Papua New Guinea and parts of northern Australia. The much larger bats were named in 1905 as H. dinops, or Fierce Leaf-Nosed Bat, and are found only in the Solomon Islands. The two sizes live together on most islands, which all have similar forested habitat.

“Although they are very different sizes, the bats’ DNA is very similar. They use very different sonar frequencies, they probably eat different food, and even when they live in the same cave together they don’t interbreed. That is why no one has ever really questioned whether they were different species,” Dr Lavery said.

Dr Lavery said despite their independent origins, each group of larger bats has evolved to look the same, averaging more than double the weight of the small bat. “Our research suggests the rapid and repeated evolution of larger bodied bats from smaller bats, each happening independently on separate islands,” he said.

“When we created family trees using the bats’ DNA, we found that what we thought was just one species of large bat in the Solomon Islands was actually a case where bigger bats had evolved from the smaller species multiple times across different islands,” he said.

This type of parallel evolution arising from separated populations of the same species has only been observed in action a few times before and is believed to be the first time it has been documented in real time in mammals.

Parallel evolution has been found in parts of the world when populations are geographically separated but live in similar environments – such as different islands or lakes. One common type of parallel evolution is convergent evolution. For example thylacines and wolves are two separate species with different origins that evolved separately to look similar. But Dr Lavery said it was rare to see two isolated populations of the same species go through the same evolutionary process.

“Something very strong is pushing or selecting for these big bats, and it is strong enough for it to happen multiple times on different islands. We think these larger bats might be evolving to take advantage of prey that the smaller bats aren’t eating. Although they could probably interbreed, they don’t for some reason,” he said.

Across the islands, the sonar frequencies of larger bats are lower and suited to hunting bigger prey, while the smaller bats use a higher frequency. This probably means the larger bats are eating larger insects, or even frogs, Dr Lavery said.

Measuring 103 bat specimens from the Australian Museum, Queensland Museum, University of Kansas Natural History Museum, and the Bernice Pauahi Bishop Museum in Hawaii, Dr Lavery also found no overlap in body size between the two groups – the smaller “species” was always easily identified from the larger bats.

“Over time larger body size may have been part of behavioural and physical adaptations needed to hunt larger prey. This might mean the bigger and smaller bats no longer recognise each other as mates, and so they live separate lives.”

Dr Lavery said this parallel evolution pattern in leaf-nosed bats had been observed in Solomon Islands on Guadalcanal and in the Western Province, and more research was needed to see if the same pattern was repeated on other islands.

“We may think of evolution as very slow process, but it can happen rapidly when the conditions are right and two groups are separated and stop interbreeding. They can begin to evolve on different pathways,” he said.

“Islands are famous for helping us to observe and understand the processes for how species evolve in real time. They’re also places that are very vulnerable to the types of disturbance created by humans create. It’s important that we look after these incredible landscapes in Solomon Islands before we lose these stories even before we find them.”



Journal

Evolution

DOI

10.1093/evolut/qpae039

Method of Research

Observational study

Subject of Research

Animals

Article Title

Parallel evolution in an island archipelago revealed by genomic sequencing of Hipposideros leaf-nosed bats

Article Publication Date

8-Mar-2024

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025
Dynamic Fusion Model Enhances scRNA-seq Clustering

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

August 27, 2025

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polycystic Ovary Syndrome Affects Atherogenic Plasma Index

Craving, Relapse, and Childhood Trauma: A Network Study

Advancing Biomedical Engineering Education: Summit Highlights Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.