• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Saint Louis University chemist asks ‘could life begin in oil?’

Bioengineer by Bioengineer
August 16, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ellen Hutti, Saint Louis University

ST. LOUIS – Paul Bracher, Ph.D., assistant professor in the department of chemistry at Saint Louis University, and his research team have been awarded a three-year $597,380 grant from the National Science Foundation (NSF) to study what life might look like on other planets – or, here on earth – if it began in oil.

The SLU team is one of four groups of chemists and biologists across the country involved in the project. Their ideas were generated at an "Ideas Lab" co-sponsored by the NSF and NASA. In a week-long workshop, scientists from a variety of backgrounds and skillsets were sequestered in a remote city in Maryland and charged with developing out-of-the-box ideas about the origin of life.

"In terms of the history of the planet, I think that how life originated has got to be the greatest scientific question we can ask," Bracher said. "To move from mixtures of chemicals to a living system capable of self-replication and evolution – nothing more interesting has happened than this."

While life as we know it on Earth relies on chemistry in aqueous environments where water is a solvent, some celestial bodies are covered not with liquid water but with liquid oils. Titan, a moon of the planet Saturn, has lakes of organic hydrocarbons and methane rain.

Were life to develop on oily worlds, the biochemistry of these organisms would have to be different. What molecules could be responsible for storing genetic information? What chemistry could decode genes and synthesize catalysts for biological functions? Those are some of the questions for which the project hopes to provide answers and clues.

"We want to establish the rules of how life might develop and evolve in oil," Bracher said. "A lot of the chemistry that works in water doesn't work in organic solvents."

"The premise of our project focuses on places like Titan and exoplanets – planets around distant stars. But it's also interesting to think if there were a second origin of life on Earth that's right under our noses, could we recognize it? We're so focused on life as we know it."

The SLU team has expertise in physical organic chemistry and will focus on reactions of small molecules, investigating how they might store information, recognize each other, and synthesize copies like nucleic acids and peptides do in modern biology. In addition to advancing the understanding of the circumstances under which life can originate, findings from this study also have the potential to contribute to medicine and industry.

"This is an exciting opportunity for our research team to tackle a challenging and unusual scientific question," Bracher said. "It's a high-risk, high-reward effort that could lead to some really interesting new, exotic biochemistry and help figure out what types of life we might find on Titan or exoplanets in distant solar systems. We're grateful for the support from the NSF and our team is excited to get to work in the lab."

###

Saint Louis University is a Catholic, Jesuit institution that values academic excellence, life-changing research, compassionate health care, and a strong commitment to faith and service. Founded in 1818, the University fosters the intellectual and character development of more than 13,500 students on campuses in St. Louis and Madrid, Spain. Building on a legacy of nearly 200 years, Saint Louis University continues to move forward with an unwavering commitment to a higher purpose, a greater good.

Media Contact

Carrie Bebermeyer
[email protected]
314-977-8015
@SLU_Official

http://www.slu.edu

Original Source

https://www.slu.edu/news/2017/august/origin-of-life-research.php

Share14Tweet7Share2ShareShareShare1

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leg and Foot Amputations Surge 65% in Illinois Hospitals from 2016 to 2023

Lactylation Biomarker Mechanisms in Neonatal Brain Damage

Imidacloprid Linked to Bladder Cancer Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.