• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Russian scientists discover how certain proteins may help fight chlamydia

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Scientists from Federal Research and Clinical Centre of Physical-Chemical Medicine, Koltzov Institute of Developmental Biology and MIPT have shown that peptidoglycan recognition proteins (PGLYRPs) of the human immune system can play a key role in the fight against chlamydia infections. Their study was published in Infection and Immunity.

Chlamydias are parasite bacteria and cause an infection that affects more than 90 million people a year. Chlamydia is one of the most common sexually transmitted diseases; it can also be spread via objects and the bacteria can sometimes survive on a surface for more than a day.

Chlamydias can be found in two different forms: elementary bodies (EBs) and reticulate bodies (RBs). EBs have strong protection against the environment and other microorganisms, which helps them survive in an intracellular space and allows them to spread and infect new cells. RBs have no constant shape and size — they exist inside the host cell membrane. This form of chlamydia can reproduce and has an active metabolism. This complex life cycle, in which the bacteria constantly change from one form to another, means that chlamydias are able to avoid the effect of most antibacterial proteins.

Proteins that are able to recognize peptidoglycan – a membrane component of some bacteria – are a part of the human immune system. They selectively interact with certain molecules and therefore play an important role in the fight against infections. In a previous study it was shown that these proteins are able to attach to a peptidoglycan and lipopolysaccharides in the cell membrane of bacteria, causing their stress response system to fail. This disruption to the regulation of the intracellular metabolism ultimately causes the death of the cell. PGLYRPs are known to use this process to destroy Escherichia coli and Bacillus subtilis bacteria whose stress response system is quite similar to the system of the chlamydia species Chlamydia trachomatis.

Based on these facts, the researchers made an assumption that PGLYRPs would be able to inhibit a chlamydia infection. To prove this, they added PGLYRP solutions to human cell cultures and then infected the cells with Chlamydia trachomatis. 48 hours later they counted the number of inclusions and compared it with control samples. Their theory about PGLYRPs inhibiting a chlamydia infection was confirmed. The number of chlamydial inclusions in the samples with proteins was ten times smaller than in the control sample. However, a significant antichlamydial effect was only observed with protein concentrations 20 times higher than for E. coli and B. subtilis. According to the authors of the study, this can be explained by the life cycle of chlamydias.

The researchers then checked the hypothesis that the cells die due to the failure of their stress response system. They observed the expression level (expression is the synthesis of substances responsible for the transmission of hereditary information through RNA) of the stress response system genes and how the level changes over time. In the control sample it remained at a base level, but in the cultures with PGLYRPs two peaks were easily distinguished — 1 hour and 72 hours after the infection. At these times, the chlamydias were in the form of elementary bodies and scientists predicted that they would be more vulnerable to PGLYRPs at this particular stage of their life cycle. Their assumption was therefore proved experimentally.

This research proved theories about the structure and life cycle of chlamydias. The researchers worked out a method of obtaining PGLYRPs with the help of genetic engineering and also demonstrated their effect on C. trachomatis bacteria.

"The findings of this research can subsequently be used to determine the exact mechanism of action of peptidoglycan-recognition proteins on chlamydias. A more complete understanding of potential targets for natural and synthetic agents could help scientists to develop efficient antichlamydial drugs", says Pavel Bobrovsky, one of the authors of the study.

###

Media Contact

Sergey Divakov
[email protected]
@phystech

https://mipt.ru/english/

Share12Tweet8Share2ShareShareShare2

Related Posts

Forecasting Cell Population Evolution Using a New Scaling Law

September 23, 2025
Beet Vinasse: A Urea Alternative for Dairy Cows

Beet Vinasse: A Urea Alternative for Dairy Cows

September 23, 2025

AgriSPEC: Smartphone Biospeckle Imager Assesses Seed Viability

September 23, 2025

Hydrocortisone’s Impact on Infants with Encephalopathy

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Forecasting Cell Population Evolution Using a New Scaling Law

Beet Vinasse: A Urea Alternative for Dairy Cows

AgriSPEC: Smartphone Biospeckle Imager Assesses Seed Viability

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.