• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Russian scientist finds a new way to predict cancer development

Bioengineer by Bioengineer
September 26, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MIPT Press Office

A scientist from the Moscow Institute of Physics and Technology (MIPT) has proposed a model that can predict the number of key carcinogenic events for each cancer type based on the relationship between morbidity and age. The results of his study were published in the prestigious journal Scientific Reports.

The progression from one carcinogenesis stage to another is defined by "driver" mutations in crucial genes, which cause the cell to acquire oncogenic properties such as the capacity for accelerated division and apoptosis resistance. Medical statistics show that oncological morbidity and mortality increase with age because carcinogenesis is driven by the accumulation of several consecutive mutations in the DNA. At the same time, the incidence rates for at least some subtypes of cancer can not only increase but also decrease with age, and this fact cannot be explained in terms of classical oncology. Many complicated carcinogenesis models involving a variety of assumptions and parameters have been proposed, but none of them provides a way to accurately predict the number of key mutations in a given type of cancer. So how can a geneticist determine whether a patient is close to accumulating a critical quantity of mutations and if there is a high risk for them to develop cancer?

Aleksey V. Belikov, a scientist from the MIPT Laboratory of Innovative Medicine and Agrobiotechnology, used the publicly available data on 20 million cancer cases and examined 16 probability distributions, finding that the incidence of 20 most prevalent cancer types in relation to patients' age closely follows the Erlang probability distribution, which is widely used in telecommunications for incoming call simulations. Notably, it is the only probability distribution that describes the waiting time for several random events, such as DNA mutations.

"A unique feature of the model is that it considers the random nature of mutations and allows to predict the number of key mutations required for the carcinogenesis process," says Belikov.

The proposed theory allows to predict the number of carcinogenesis stages for any subtype of cancer with available statistics on age-dependent incidence. This method can help scientists to identify the driver mutations associated with different subtypes of cancer. In the future, it may find utility in clinical practice as well. For instance, a geneticist will be able to find out a patient's cancer risk by studying the number of driver mutations identified by DNA analysis.

###

Media Contact

Asya Shepunova
[email protected]
7-916-813-0267
@phystech

https://mipt.ru/english/

Original Source

https://mipt.ru/english/news/russian_scientist_finds_a_new_way_to_predict_cancer_development http://dx.doi.org/10.1038/s41598-017-12448-7

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.