• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Russian-Japanese research helps understand the effects of microgravity on bone tissue

Bioengineer by Bioengineer
January 26, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The paper appeared in Scientific Reports.

The co-authors from the Russian side are Oleg Gusev (Extreme Biology Lab, Kazan Federal University) and Vladimir Sychyov (Institute of Medical and Biological Problems of RAS).

As is well-known, space flights bring with them a unique set of health hazards. That includes bone and muscle deterioration. Loss of bone density is currently one of the most serious problems for astronauts. It is similar in nature to osteoporosis, an ailment common for senior people. Understanding microgravity and its effects on living organisms can help find new clinical methods of coping with this issue.

Oleg Gusev explains, &laquoFishes are one of the test organisms that give an opportunity to outline space flight effects on one's health. Water stabilizes overloads and compensates microgravity. What we see in this research are the results of other factors, possibly space radiation or other sensitivities to gravity. Medaka fish also grows fast, so that's another benefit for the testing process. Their genome has been deciphered».

Soyuz TMA-06M delivered several medakas to the International Space Station. Its other name — rice fish — indicates its special affinity for rice paddies. Medakas first visited space in 1994 on Columbia — they successfully spawned during that flight. This time they will stay in ISS for several years.

As it turned out, medakas start losing bone density much faster than humans — almost immediately after arriving. The paper aims to explain what events and genes influence the progress of osteoporosis in medakas.

These particular fishes have been genetically modified — they have fluorescent proteins in them (in red and green light). These different proteins are formed in osteoclasts (bone cells that eliminate the old bone tissue) and osteoblasts (the ones that create new bone tissue). Both types of cells started appearing more quickly on the orbit than on the Earth. Microgravity leads to different changes in the body, such as redistribution of liquids, hypertension, and vertigo. Mineralization of bones decreases, but little is understood about how osteoclasts and osteoblasts react to these conditions.

The researchers hypothesize about up-regulation of genes osterix, osteocalcin, TRAP, and MMP9 in microgravity. Specific genes osterix and osteocalcin can react to gravity shifts because their activity rose simultaneously during the experiment.

Trans­criptomic analysis of fishes' throat bones showed a significant increase in regulation of 2 genes of osteoblasts and 3 genes of osteoclasts. More detailed analysis in space showed increases in activities of the genes c-fos, jun-B-like, pai-1, ddit4, and tsc22d3.

Earlier other researchers have shown that glucocorticoid hormones increase the activity of trans­cription factor AP-1 that regulates gene expression in response to a variety of stimuli, including cytokines, growth factors, stress, and bacterial and viral infections. Glucocorticoid receptors may be involved in osteoclast activity fluctuations. Also, stress is known to elevate blood pressure, which leads to nitrous oxide production and in turn – to blood pressure decrease. Glucocorticoid receptors and nitrous oxide, as some recent observations have proved, act in unison through the changes in activities of such genes as tsc22d3 and ddit4 which react to microgravity.

Thus, the paper suggests the participation of NO – GCR signal pathway in microgravity stress.

###

Media Contact

Yury Nurmeev
[email protected]
@KazanUni

http://kpfu.ru/eng

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Broad T Cell Response Against Omicron Spike Variants

October 6, 2025

HUWE1 Loss Drives Stemness, Drug Resistance in CRC

October 6, 2025

Accounting for Albedo in Carbon Market Protocols

October 6, 2025

Designing Relationships in Intrinsically Disordered Proteins

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Broad T Cell Response Against Omicron Spike Variants

HUWE1 Loss Drives Stemness, Drug Resistance in CRC

Accounting for Albedo in Carbon Market Protocols

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.