• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Run (and Tumble) to Dinner

Bioengineer by Bioengineer
February 16, 2022
in Biology
Reading Time: 3 mins read
0
Run (and Tumble) to Dinner
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – The aroma of a favorite dessert can tempt almost anyone to follow the scent. By moving in the direction of increasing smell, one can often locate the desired confection. It turns out that even simple organisms, like the single-celled E. coli bacterium, can use a similar method to detect and move toward food. Now, researchers have developed a theoretical model for the best possible search strategy when searching for source of the scent, which may help in the design of new drones or nanobots that can find their own way to a chemical target.

Run (and Tumble) to Dinner

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – The aroma of a favorite dessert can tempt almost anyone to follow the scent. By moving in the direction of increasing smell, one can often locate the desired confection. It turns out that even simple organisms, like the single-celled E. coli bacterium, can use a similar method to detect and move toward food. Now, researchers have developed a theoretical model for the best possible search strategy when searching for source of the scent, which may help in the design of new drones or nanobots that can find their own way to a chemical target.

Scientists from the Institute of Industrial Science, The University of Tokyo have studied the odor-searching strategy used by organisms ranging from bacteria to multicellular eukaryotes, which perform “chemotaxis”. Chemotaxis is the process of attraction in the direction of a chemical gradient, and it takes several forms. E. coli bacteria use the common approach called “run-and-tumble,” in which periods of forward swimming are interrupted by rotations that randomly change the direction of motion. Although linear control theory has become part of the established practice of engineering, it does not suffice to handle the nonlinearity and large noise seen in biological systems. A more tailored theory is needed to better understand this phenomenon.

The research team used stochastic optimal control theory to find the best possible fully nonlinear sensing and control strategy of run-and-tumble motion in environments with noisy chemical gradients. They modeled the internal control using a partially observable Markov decision process. In this framework, agents cannot directly observe the correct solution, but they can update their beliefs by sensing their environment.

To make the model as realistic as possible, the researchers included a control cost that represents the physical limitations of regulating when tumbling occurs. “The correspondence between our optimal solution and biochemical bacterial models demonstrates the applicability of our theoretical framework to the understanding of biological search systems,” says first author Kento Nakamura. The primary way that organisms control their motion and progressively move toward a target is by inhibiting tumbling when sensing that the chemical concentration is increasing along their current direction.

This work opens the way for new kinds of autonomous pathfinding algorithms that can be employed to find specific targets, even if their exact locations are unknown. “Understanding the internal control mechanisms of biological organisms would be helpful when designing biomimetic robots that can take advantage of these systems,” says senior author Tetsuya J. Kobayashi.

###

The article, “Optimal sensing and control of run-and-tumble chemotaxis,” was published in Physical Review Research at DOI: 10.1103/PhysRevResearch.4.013120.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,200 members including approximately 400 staff and 800 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and realworld applications.



Journal

Physical Review Research

DOI

10.1103/PhysRevResearch.4.013120

Article Title

Optimal sensing and control of run-and-tumble chemotaxis

Article Publication Date

15-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025
UC Riverside Scientist Honored by American Federation for Aging Research

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025

Prodrug Florfenicol Amine Targets Resistant Mycobacterium abscessus

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PFAS Levels Linked in Water and Southern California Adults

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.