• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

RUDN University soil scientists: Green suburbs can be more harmful than city centers

Bioengineer by Bioengineer
October 7, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: RUDN University

A team of soil scientists from RUDN University confirmed that traditional approaches to urban soil pollution monitoring ignore actual risks for urban residents because they don’t take into consideration the barrier function of the soil. The team used Moscow as an example to show that not only polluted downtown districts but also recreational parks and forest zones can pose a threat to people. This is due to the fact that the barrier functions of the soil are weaker in green suburbs, making it unable to withstand even the slightest pollution. The results of the study were published in the Journal of Environmental Quality.

Industrial soil pollution with heavy metals poses a threat to human health. From the soil, harmful substances get into the water, dust, and plants. The intensity of these processes depends on the properties of the soil, namely its organic content, acidity, and texture. For example, clay and loam soils act as a geochemical barrier: they retain harmful substances and don’t let them spread. However, traditional approaches to ecological monitoring overlook this barrier role and assess risks based only on the concentration of contaminating agents. Using these methods, one can miss potentially harmful zones or overestimate the danger. A team of soil scientists from RUDN University developed the first map of Moscow that takes into account not only the level of heavy metal pollution but also the barrier function of the soils.

The experiment covered nine administrative districts of Moscow with a total area of over 1,000 km2. The main sources of contamination across this territory were industrial facilities and automobiles. The researchers took soil samples from 224 points in public spaces, residential areas, and industrial zones. The samples were dried and ground to measure their soil texture, organic content, and acidity. Based on these parameters, the team calculated the ability of the samples to contain pollutants. Then, using spectral analysis, the researchers measured the concentrations of heavy metals: nickel, cadmium, manganese, lead, copper, zinc, arsenic, and mercury. After that, individual concentration and containment maps were developed and integrated into one general map.

In over 30% of the samples, heavy metal concentrations exceeded the norms of the Russian Agency for Health and Consumer Rights (Rospotrebnadzor). For example, the prohibitive amount of copper in 1 kg of soil is 33 to 132 mg (depending on soil type), and of arsenic–from 2 to 10 mg. However, in some cases, these norms were exceeded 2 to 5 times. The most polluted soils were the ones taken from public places downtown. However, loam soil with alkaline acidity that is typical for the center of Moscow has a high barrier activity index, which means it can retain the pollution. At the same time, more sandy and acidic in topsoils have weaker barrier functions, and though the concentration of harmful substances there is lower, they cannot withstand the pollution. The team concluded that in order to effectively assess the ecological situation in the city, one has to take into account both the level of pollution and the ability of the soil to stop it. Traditional monitoring approaches based solely on concentration levels do not give an adequate risk profile.

“We developed pollution level maps and the maps of soils as geochemical barriers, and they turned out not to match each other. In some cases, the ability of the soils to bind down heavy metals compensates for high pollution levels. On the other hand, in some green zones topsoils are unable to contain even the smallest amounts of pollutants. Our results show how important it is to see the bigger picture and take both factors into consideration,” said Olga Romzaykina, a researcher at the Research Laboratory “Smart Technologies for Sustainable Urban Development under Global Change”, RUDN University

###

Media Contact
Valeriya Antonova
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/jeq2.20142

Tags: Earth ScienceEcology/EnvironmentGeology/Soil
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Tryptophan Detection in Milk via Enzyme Sensor

January 14, 2026
Structural and Functional Differences in Citrus PRR and R Genes

Structural and Functional Differences in Citrus PRR and R Genes

January 14, 2026

Gut Microbiota l-Theanine Boosts Amino Acid Breakdown

January 14, 2026

Accelerated Donkey Breed Classification via SNP Insights

January 14, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    74 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing CAR T-Cells for Chronic Viral Infections

Pharmacovigilance Awareness Among Saudi Healthcare Students

Advancing AI: Integrated Analog In-Memory Computing Breakthrough

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.