• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Royal Ontario Museum researchers identify oldest known species of swimming jellyfish

Bioengineer by Bioengineer
August 2, 2023
in Biology
Reading Time: 3 mins read
0
Reconstruction of a group of Burgessomedusa phasmiformis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Royal Ontario Museum (ROM) announces the oldest swimming jellyfish in the fossil record with the newly named Burgessomedusa phasmiformis. These findings are announced in the journal Proceedings of the Royal Society B.  

Reconstruction of a group of Burgessomedusa phasmiformis

Credit: Reconstruction by Christian McCall. © Christian McCall

Royal Ontario Museum (ROM) announces the oldest swimming jellyfish in the fossil record with the newly named Burgessomedusa phasmiformis. These findings are announced in the journal Proceedings of the Royal Society B.  

Jellyfish belong to medusozoans, or animals producing medusae, and include today’s box jellies, hydroids, stalked jellyfish and true jellyfish. Medusozoans are part of one of the oldest groups of animals to have existed, called Cnidaria, a group which also includes corals and sea anemones. Burgessomedusa unambiguously shows that large, swimming jellyfish with a typical saucer or bell-shaped body had already evolved more than 500 million years ago.

Burgessomedusa fossils are exceptionally well preserved at the Burgess Shale considering jellyfish are roughly 95% composed of water. ROM holds close to two hundred specimens from which remarkable details of internal anatomy and tentacles can be observed, with some specimens reaching more than 20 centimetres in length. These details enable classifying Burgessomedusa as a medusozoan. By comparison with modern jellyfish, Burgessomedusa would also have been capable of free-swimming and the presence of tentacles would have enabled capturing sizeable prey.

“Although jellyfish and their relatives are thought to be one of the earliest animal groups to have evolved, they have been remarkably hard to pin down in the Cambrian fossil record. This discovery leaves no doubt they were swimming about at that time,” said co-author Joe Moysiuk, a Ph.D. candidate in Ecology & Evolutionary Biology at the University of Toronto, who is based at ROM.

This study, identifying Burgessomedusa, is based on fossil specimens discovered at the Burgess Shale and mostly found in the late 1980s and 1990s under former ROM Curator of Invertebrate Palaeontology Desmond Collins. They show that the Cambrian food chain was far more complex than previously thought, and that predation was not limited to large swimming arthropods like Anomalocaris (see field image showing Burgessomedusa and Anomalocaris preserved on the same rock surface).

“Finding such incredibly delicate animals preserved in rock layers on top of these mountains is such a wonderous discovery. Burgessomedusa adds to the complexity of Cambrian foodwebs, and like Anomalocaris which lived in the same environment, these jellyfish were efficient swimming predators,” said co-author, Dr. Jean-Bernard Caron, ROM’s Richard Ivey Curator of Invertebrate Palaeontology. “This adds yet another remarkable lineage of animals that the Burgess Shale has preserved chronicling the evolution of life on Earth.”

Cnidarians have complex life cycles with one or two body forms, a vase-shaped body, called a polyp, and in medusozoans, a bell or saucer-shaped body, called a medusa or jellyfish, which can be free-swimming or not. While fossilized polyps are known in ca. 560-million-year-old rocks, the origin of the free-swimming medusa or jellyfish is not well understood. Fossils of any type of jellyfish are extremely rare. As a consequence, their evolutionary history is based on microscopic fossilized larval stages and the results of molecular studies from living species (modelling of divergence times of DNA sequences). Though some fossils of comb-jellies have also been found at the Burgess Shale and in other Cambrian deposits, and may superficially resemble medusozoan jellyfish from the phylum Cnidaria, comb-jellies are actually from a quite separate phylum of animals called Ctenophora. Previous reports of Cambrian swimming jellyfish are reinterpreted as ctenophores.

The Burgess Shale fossil sites are located within Yoho and Kootenay National Parks and are managed by Parks Canada. Parks Canada is proud to work with leading scientific researchers to expand knowledge and understanding of this key period of Earth history and to share these sites with the world through award-winning guided hikes. The Burgess Shale was designated a UNESCO World Heritage Site in 1980 due to its outstanding universal value and is now part of the larger Canadian Rocky Mountain Parks World Heritage Site.

Visitors to ROM can see fossils of Burgessomedusa phasmiformis on display in the  Burgess Shale section of the recently opened Willner Madge Gallery, Dawn of Life.  



Journal

Proceedings of the Royal Society B Biological Sciences

DOI

10.1098/rspb.2022.2490

Subject of Research

Animals

Article Title

A macroscopic free-swimming medusa from the middle Cambrian burgess shale

Article Publication Date

2-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025
Innovative Lab-Grown Human Embryo Model Generates Blood Cells

Innovative Lab-Grown Human Embryo Model Generates Blood Cells

October 13, 2025

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1232 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Varied Diets: Key to Sustainability and Health in Europe

Sound-Activated Drug Release Using Artificial Cilia System

Muscle Activity in Centric Relation Methods: A Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.