• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Roswell Biotechnologies demonstrates molecular electronics sensors on a semiconductor chip in peer-review paper

Bioengineer by Bioengineer
January 24, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The first molecular electronics chip has been developed, realizing a 50-year-old goal of integrating single molecules into circuits to achieve the ultimate scaling limits of Moore’s Law. Developed by Roswell Biotechnologies and a multi-disciplinary team of leading academic scientists, the chip uses single molecules as universal sensor elements in a circuit to create a programmable biosensor with real-time, single-molecule sensitivity and unlimited scalability in sensor pixel density. This innovation, appearing this week in a peer-reviewed article in the Proceedings of the National Academy of Sciences (PNAS), will power advances in diverse fields that are fundamentally based on observing molecular interactions, including drug discovery, diagnostics, DNA sequencing, and proteomics.

Roswell Chief Science Officer Barry Merriman on the PNAS paper

Credit: Frank Rogozienski
FRANK ROGOZIENSKI PHOTOGRAPHY

The first molecular electronics chip has been developed, realizing a 50-year-old goal of integrating single molecules into circuits to achieve the ultimate scaling limits of Moore’s Law. Developed by Roswell Biotechnologies and a multi-disciplinary team of leading academic scientists, the chip uses single molecules as universal sensor elements in a circuit to create a programmable biosensor with real-time, single-molecule sensitivity and unlimited scalability in sensor pixel density. This innovation, appearing this week in a peer-reviewed article in the Proceedings of the National Academy of Sciences (PNAS), will power advances in diverse fields that are fundamentally based on observing molecular interactions, including drug discovery, diagnostics, DNA sequencing, and proteomics.

“Biology works by single molecules talking to each other, but our existing measurement methods cannot detect this,” said co-author Jim Tour, PhD, a Rice University chemistry professor and a pioneer in the field of molecular electronics. “The sensors demonstrated in this paper for the first time let us listen in on these molecular communications, enabling a new and powerful view of biological information.”

The molecular electronics platform consists of a programmable semiconductor chip with a scalable sensor array architecture. Each array element consists of an electrical current meter that monitors the current flowing through a precision-engineered molecular wire, assembled to span nanoelectrodes that couple it directly into the circuit. The sensor is programmed by attaching the desired probe molecule to the molecular wire, via a central, engineered conjugation site. The observed current provides a direct, real-time electronic readout of molecular interactions of the probe. These picoamp-scale current-versus-time measurements are read out from the sensor array in digital form, at a rate of 1000 frames per second, to capture molecular interactions data with high resolution, precision and throughput.

“The goal of this work is to put biosensing on an ideal technology foundation for the future of precision medicine and personal wellness,” added Roswell co-Founder and Chief Scientific Officer Barry Merriman, PhD, the senior author of the paper. “This requires not only putting biosensing on chip, but in the right way, with the right kind of sensor. We’ve pre-shrunk the sensor element to the molecular level to create a biosensor platform that combines an entirely new kind of real-time, single-molecule measurement with a long-term, unlimited scaling roadmap for smaller, faster and cheaper tests and instruments.”

The new molecular electronics platform detects multi-omic molecular interactions at the single-molecule scale, in real-time. The PNAS paper presents a wide array of probe molecules, including DNA, aptamers, antibodies, and antigens, as well as the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR Cas enzyme binding its target DNA. It illustrates a wide range of applications for such probes, including the potential for rapid COVID testing, drug discovery and proteomics.

The paper also presents a molecular electronics sensor capable of reading DNA sequence. In this sensor, a DNA polymerase, the enzyme that copies DNA, is integrated into the circuit, and the result is direct electrical observation of the action of this enzyme as it copies a piece of DNA, letter by letter. Unlike other sequencing technologies that rely on indirect measures of polymerase activity, this approach achieves direct, real-time observation of a DNA polymerase enzyme incorporating nucleotides. The paper illustrates how these activity signals can be analyzed with machine learning algorithms to allow reading of the sequence.

“The Roswell sequencing sensor provides a new, direct view of polymerase activity, with the potential to advance sequencing technology by additional orders of magnitude in speed and cost,” said Professor George Church, a co-author of the paper, member of the National Academy of Sciences, and a Roswell Scientific Advisory Board member. “This ultra scalable chip opens up the possibility for highly distributed sequencing for personal health or environmental monitoring, and for future ultra-high throughput applications such as Exabyte-scale DNA data storage.”

ABOUT ROSWELL BIOTECHNOLOGIES

Roswell Biotechnologies is digitizing biology with molecular electronics to predict, prevent, and cure disease. The company has developed the world’s first molecular electronics chip, the Roswell ME Chip™, which integrates single-molecules into standard semiconductor chip technology to deliver a programmable biosensor that converges a broad range of biosensing applications and omics measurements onto one platform. The Roswell ME Platform is being commercialized for applications in drug research and discovery, molecular diagnostics, sequencing, and DNA digital data storage. Roswell Biotechnologies was founded in 2014 by industry leaders in genomic technologies and is headquartered in San Diego, California.

 

 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2112812119

Subject of Research

Not applicable

Article Title

Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity

Article Publication Date

24-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

August 15, 2025
New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

August 15, 2025

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

August 15, 2025

Sparring Saigas Triumph at the 2025 BMC Journals Image Competition

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lead in Breast Cancer Tissue Linked to DNA Instability

Training the Immune System to Accept Transplants: A Breakthrough That Could Revolutionize Organ Donation

KIER Innovates Advanced Electrodes for Efficient Hydrogen Production from Seawater Electrolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.