• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Root extract of Chinese medicinal plant makes worms to live longer

Bioengineer by Bioengineer
October 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A root extract of the Fallopia multiflora, or Chinese knotweed, has special properties: it enables the nematode C. elegans to live longer and protects it from oxidative stress. This has been demonstrated in a new study by nutritional scientists at Martin Luther University Halle-Wittenberg (MLU). The researchers provide scientifically substantiated evidence for the effectiveness of this extract, which is primarily used in traditional Chinese medicine and as a dietary supplement. At the same time, they have identified molecular signalling pathways that could be responsible for the extract's effect. Their study was recently published in the international scientific journal Plants.

The Chinese knotweed is very popular. Many suppliers sell extracts and powders of this plant as dietary supplements and advertise the rejuvenating and particularly health-promoting effect that the products supposedly possess. However only a handful of scientifically based studies have examined its effects. "Most studies have only focused on the primary active ingredient of the plant extract. But it actually contains many different substances whose combined efficacy has not yet been thoroughly researched," says nutritional scientist Professor Wim Wätjen from MLU. His research group has been studying the plant, its ingredients, and their possible effects for several years.

In the current study, the researchers from Halle examined whether the much-praised anti-ageing effects can actually be proven. They administered a high amount of the extract to the nematode C. elegans, a model organism frequently used in the bio- and life sciences. "Most earlier studies investigated the effects of the plant on isolated cells or in a test tube; we wanted to study it in a living organism," explains Wätjen. When the highest concentration was administered to the worms, 1,000 micrograms per millilitre, various effects were observed: The lifetime of the worms was extended by almost 19 per cent. For C. elegans this corresponds to an increase of about three days. In two further tests, the scientists investigated the extent to which the drug also protects the worms from oxidative stress or heat stress. Even though the extract did not improve the survival rate of worms in hot conditions, it was found to reduce the formation of harmful oxygen radicals and protect the animals significantly better against elevated oxidative stress.

In the next step the researchers repeated the tests with worms whose genetic material had been specifically altered at certain sites. This switched off special proteins that are critical for ageing. "If the genes responsible for producing the proteins DAF-16 or Sir-2.1 were defective, the positive effects of the root extract were also significantly lower," says Wätjen. A longer lifespan could only be observed if all proteins functioned properly. "This confirms that ageing is a complex process that depends on many factors," says Wätjen.

The results of the new study fit in well with previous studies: The primary component of the root extract is a substance that has a similar structure to resveratrol. "This substance is found in grapes, for example, and is known to activate a special class of enzymes called sirtuins. These have long been considered the most important substances for controlling the body's ageing process," says Wätjen.

The new study provides clues on how plant-based ingredients intervene in basic mechanisms and signalling pathways of ageing which can serve as a basis for further research. However, the findings cannot be transferred directly to humans. Although the basic principles and signalling pathways in other organisms may be similar, says Wätjen, subsequent studies are needed to clarify whether the effects observed in C. elegans can also be demonstrated in other organisms. In the future researchers in Halle will investigate the protective effect the extract has on the development of plaques in Alzheimer's disease.

###

Media Contact

Tom Leonhardt
[email protected]
49-345-552-1438

http://www.uni-halle.de

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=2949

Related Journal Article

http://dx.doi.org/10.3390/plants7030060

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chronic Disease Burdens NICU Families: Outcomes, Impact

AI Transformer Enhances Clinical Respiratory Disease Analysis

CABI Scientists Propose Accidentally Introduced Parasitoid as Potential Savior Against Box Tree Ecological Extinction

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.