• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Robust cell junctions are critical for maintaining stem cell function

Bioengineer by Bioengineer
March 26, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells

IMAGE

Credit: Avinanda Banerjee

The skin is the largest organ in the human body, and its outermost part, called the epidermis, is replenished every three weeks. The cells fueling this renewal of the epidermal stem cells, found in specialized areas or niche, within a region of the hair follicle (or root) is known as the ‘bulge compartment’. The bulge compartment resident stem cells are multipotent meaning that they can contribute to the repair of skin when it’s injured, and also regenerate the hair follicles during normal development. While several groups have focused attention on the stem cells themselves, less is known about niche or extrinsic factors that influence the state of these stem cells.

In the recent paper published in the Developmental Cell, Dr. Srikala Raghavan and her research group at the Centre for Inflammation and Tissue Homeostasis (CITH) theme, DBT-inStem identified the role for robust cell adhesion between stem cells in maintaining their quiescent properties. They focused on a protein called vinculin, a ‘mechanotransducer’ expressed in the skin. Mechanotransducers are proteins that signal by generating force within the cell via engaging with the cell’s cytoskeleton. Vinculin is found at the junctions between cells, also known as the ‘adherens junction’, and between the cell and the substratum, known as the ‘focal adhesion’. When the research team deleted the vinculin gene from the epidermal compartment (known as a conditional knockout, cKO), they found to their surprise that the animals were perfectly normal other than displaying a sparse coat of hair.

Ritusree Biswas, a graduate student in the Raghavan lab focused her analysis on exploring the behavior of hair follicles’ stem cells. Her studies revealed that the stem cells in the vinculin cKO failed to maintain quiescence. Because the stem cells were constantly dividing, she was able to show that these cells no longer functioned like classical stem cells, which in turn contributed to the sparse hair phenotype. Avinanda Banerjee, another author on the publication, focused on the mechanism underpinning the loss of quiescence in these stem cells. She examined mechanotransduction or forces generated by cells that lacked vinculin in collaboration with Prof. Yan Jie and his post doc, Zhihai Zhao, at the Mechanobiology Institute (MBI), Singapore. When Avinanda measured the forces at cell junctions generated by the vinculin KO (knockout) cells, she discovered that these cells generated only about half the force than a normal cell that expresses vinculin. This data suggested that the loss of vinculin was making the junctions weak. This was very surprising since they had shown that all of the proteins which were normally present at the junctions were present, in fact at higher levels.

The research team then focused on understanding the relationship between the weak junctions and loss of stem cell quiescence. They performed global gene expression profiling of vinculin KO cells to identify pathways that may have changed due to the loss of vinculin. One of pathways that was significantly changed was the YAP1 pathway. YAP1 is a transcription factor and controls the expression of genes that regulate the cell cycle. The increased expression of YAP1 in the KO provided an explanation for increased cell proliferation and loss of quiescence. So why is YAP1 expression dysregulated? It turns out that since YAP1 is such a potent regulator of cell proliferation, it is normally sequestered at the strong cell-cell junctions found in quiescent stem cells, otherwise known as a ‘contact inhibited state’. However, since the junctions in the vinculin KO cells were weak, YAP1 was no longer sequestered at these junctions and could translocate into the nucleus and regulate cell proliferation.

This recent work by the Raghavan lab has implications beyond skin stem cells. When cancer cells metastasize out of their niche, there is a reduction in the expression of cell junction proteins and a concomitant increase in the expression of YAP1. In ongoing work, Srikala’s lab is exploring how the loss of vinculin affects signals received by the nucleus.

###

This work is a collaboration with an international team of scientists that includes Colin Jamora (inStem, IFOM JRL), Dasaradhi Palakodeti (inStem), Robert Ross (UCSD), Yan Jie (MBI, Singapore) and Valera Vasioukhin (Fred Hutch, Seattle). This work was supported by the Science & Engineering Research Board (SERB), Department of Science and Technology (DST), India, and the Institute for Stem Cell Science and Regenerative Medicine (InStem) at Bangalore.

Media Contact
Srikala Raghavan
[email protected]

Original Source

https://www.sciencedirect.com/science/article/pii/S153458072100160X

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2021.02.020

Tags: BiologyBiomedical/Environmental/Chemical EngineeringCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Male Crickets Build Muscle While Females Prioritize Reproductive Organs, Study Finds

Male Crickets Build Muscle While Females Prioritize Reproductive Organs, Study Finds

September 24, 2025
Teddy Bears as Conservation Tools: Why They Need a Fresh New Look

Teddy Bears as Conservation Tools: Why They Need a Fresh New Look

September 24, 2025

Groundbreaking Data Reveal Unseen Insights into Early Childhood Brain Development

September 24, 2025

UVB Radiation’s Impact on Catla Catla Spawn

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • New Study Reveals the Science Behind Exercise and Weight Loss

    53 shares
    Share 21 Tweet 13
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Long-Term 3D Dual-Modal Live-Cell Imaging with Computational Adaptive Optics

Stowers Scientists Uncover Fusion Point of Robertsonian Chromosomes, Shedding Light on Chromosomal Evolution

Evolving Insurance Coverage in Childhood Within the Fragmented US Healthcare System

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.