• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Robots help put brakes on inflammatory diseases

by
June 25, 2024
in Health
Reading Time: 4 mins read
0
Necroptosis atlas
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fully automated diagnostic techniques, including liquid handling robots, are poised to improve the lives of millions of people living with inflammatory diseases worldwide.  

Necroptosis atlas

Credit: WEHI

Fully automated diagnostic techniques, including liquid handling robots, are poised to improve the lives of millions of people living with inflammatory diseases worldwide.  

A landmark WEHI study has revealed new methods in detecting necroptosis, a key factor in many inflammatory diseases like psoriasis, arthritis and inflammatory bowel disease.

The findings mark a huge leap forward in our ability to diagnose necroptosis accurately. They also offer practical methods that can be easily reproduced in hospitals worldwide, giving hope for new ways to treat inflammatory diseases.

At a glance

  • Necroptosis is a form of cell death, one of the body’s natural processes for removing unwanted or dangerous cells. In some people this process can go awry and trigger disease.
  • Researchers have developed a set of automated techniques to pinpoint when and where necroptosis happens in patients.
  • The findings could lead to better diagnosis and personalised treatments for numerous inflammatory diseases.

Catching the cell death ‘culprit’

Necroptosis, a type of cell death associated with inflammation, has long been suspected as the ‘culprit’ driving many debilitating diseases associated with gut, skin, and lung conditions. However, identifying which cells undergo necroptosis in real-life situations has been difficult.

WEHI’s Dr Andre Samson, co-leader of the study, said the findings had cracked a challenging and hotly debated area of science.

“It is so exciting to finally be able to catch necroptosis in the act,” Dr Samson said.

The new methods precisely located necroptosis in patients with ulcerative colitis or Crohn’s disease, providing critical insights into how this cell death process contributes to various inflammatory diseases.

The findings further revealed that necroptosis responds not just to inflammation, but also to bacterial changes or immune issues.

“Among other results, we also found that when proteins like Caspase-8 cluster together in cells, it’s a sign of necroptosis,” Dr Samson said.

“This is a major leap forward in our journey to eventually delivering new medicines that can treat a long list of inflammatory diseases by stopping necroptosis.

“It helps us understand when and where necroptosis happens, both in healthy and disease situations.”

Diversity delivers

The study involved a meticulous and painstaking process of optimising over 300 different experimental conditions to arrive at a set of reliable robotic methods.

Study co-leader and WEHI Inflammation division head, Professor James Murphy, said a ‘perfect trio’ was behind the groundbreaking results ­– decades of tireless cell death research, cutting edge technology and a brilliant global team.

“We used multiple techniques, including state-of-the-art spatial transcriptomics to scrutinise and verify our results,” Prof Murphy said.

“The size and diversity of the team was also noteworthy and critical to uniting invaluable perspectives and expertise.”

The team included three PhD students – Shene Chiou, Aysha Al-Ani and Wayne Cawthorne – six departments from WEHI, spanning disciplines from advanced imaging to genomics, plus collaborators including gastroenterologists from the Royal Melbourne Hospital and bioinformaticians from Cornell University in New York.

Lifesaving atlas for the future

The research opens new windows to understanding the intricate mechanisms of cell death and its connection to inflammatory diseases.

The team behind the study referred to their work as an “atlas of necroptosis” because it provides a precise map of which cells in the body are capable of undergoing necroptosis.

“We can now confidently visualise where and when necroptotic cell death can happen in the body,” said Prof Murphy.

In the spirit of collaboration, Prof Murphy emphasised that a key goal of the study was to discover a solution that could be easily replicated in both the laboratory and clinical settings.

“Most importantly, researchers and clinicians around the world will now be able to use these new methods, especially as liquid handling robots for immunostaining are common in hospitals and pathology departments worldwide,” he said.

“The next phase is to use these robotic methods to advance our understanding of which diseases could benefit from medicines that block necroptosis.”

The successful development of these automated methods to detect necroptosis in patients is just the beginning. The research team plans to extend their techniques to investigate other gut diseases, such as coeliac disease, and a broader range of inflammatory conditions of the skin, lung and kidney.

The study “An immunohistochemical atlas of necroptotic pathway expression” is now published in EMBO Molecular Medicine (DOI: 10.1038/s44321-024-00074-6).

The research was supported by the National Health and Medical Research Council, the Kenneth Rainin Foundation, Anaxis Pharma and in collaboration with the Royal Melbourne Hospital and Cornell University.



Journal

Molecular Medicine

DOI

10.1038/s44321-024-00074-6

Method of Research

Observational study

Subject of Research

Human tissue samples

Article Title

An immunohistochemical atlas of necroptotic pathway expression

Article Publication Date

15-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Lung Cancer Remodels Bone Marrow Immune Cells, Undermining the Body’s Defenses

September 10, 2025
blank

Cells Harness Electricity to Remove ‘Weakest’ Neighbors, Maintaining Healthy Protective Barriers

September 10, 2025

Machine Learning Reveals Targets for Precision Drug Design

September 10, 2025

Impact of Race, Ethnicity, and Insurance on Survival Rates After Pediatric Cardiac Arrest

September 10, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lung Cancer Remodels Bone Marrow Immune Cells, Undermining the Body’s Defenses

ML Uncovers Transposable Elements Shaping Sorghum Traits

AI vs. Tumor Boards: Benchmarking Sarcoma Treatments

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.