• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Roads are driving rapid evolutionary change in our environment

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Graphic created by Steven P. Brady using symbols courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).

HANOVER, N.H. – Feb. 16, 2017 – Roads are causing rapid evolutionary change in wild populations of plants and animals according to a Concepts and Questions paper published in Frontiers in Ecology and the Environment. The paper is available now online in 'early view' ahead of being featured on the cover in the print edition on March 1. (A pdf of the paper is also available here).

Said to be the largest human artifact on the planet, roads impact the ecology of nearly 20 percent of the U.S. landscape alone, and globally, are projected to increase 60 percent in length by 2050; yet, how roads are triggering contemporary evolutionary changes among plants and animals, is a topic that has typically been overlooked.

By drawing on previous studies, the researchers show that the numerous negative effects of roads – such as pollution and road kill – can cause rapid evolutionary changes in road-adjacent populations. This finding that roads spur rapid evolution is transforming scientists' views of the biological impacts caused by the ever-expanding network of roads. Over a period of just a few generations – and in one case in as few as just 30 years – some populations living in road-adjacent habitat are evolving higher tolerance to pollutants, such as road salt runoff; the common grass Anthoxanthum odoratum is one such example, the spotted salamander (Ambystoma maculatum) is another. Despite this positive influence of rapid evolution, road-adjacent populations are not always able to adapt to life beside the road, at times becoming 'maladapted,' evolving lower tolerances to negative road effects. This can occur even if other species in those habitats are adapting, as was the case with the spotted salamander and a cohabitant frog. Earlier fieldwork by Brady found that the survival rate for wood frog Rana sylvatica populations living by the road was 29 percent lower than those transplanted from other areas. With the spotted salamander and wood frog, the fitness of each population had increased and decreased, respectively, relative to populations not living roadside, which demonstrates how local adaptive and maladaptive changes are occurring through natural selection among various species. Even though a population may experience local adaptation, the researchers point out that while evolution might decrease the chance of local extinction, it does not preclude it.

"We have long known that slicing and dicing our planet with roads presents many challenges for plants and animals but we are only now beginning to appreciate that those same challenges can drive evolutionary change over just a few generations. This forces us to reconsider the nature of road effects and the complexity of ways that life responds to them," says lead-author Steven P. Brady (http://stevenpbrady.weebly.com/), a biologist in the Department of Water and Land Resources at King County in Seattle, Wash., who was a post-doctoral fellow in biological sciences at Dartmouth College, when the paper was written. Brady was a member of Ryan Calsbeek's Lab in Evolutionary Ecology at Dartmouth.

"It is striking to consider that across such different organisms – grasses, swallows, amphibians – roads have similar capacity to cause divergent evolution among local populations," says Brady. "But what is perhaps most surprising is that some populations appear to be evolving maladaptively right alongside populations that are evolving adaptively. And from what we can tell, such maladaptive outcomes may become increasingly common in response to human-modified environments such as road-adjacent habitats."

The evolutionary perspectives of road ecology is integral to understanding how roads are impacting our environment, and to planning for and implementing conservation efforts. As new roads and infrastructure projects are considered by local, state and federal municipalities, including the prospect of a new U.S. infrastructure program, an integrated policy approach that considers maximizing the connectivity of habitats, preserving genetic diversity and increasing population sizes, may help "mitigate the consequences of roads."

###

Brady is available for comment at: [email protected]. Jonathan L. Richardson, Assistant Professor at Providence College, co-authored the study with Brady.

Media Contact

Amy D. Olson
[email protected]
603-646-3274
@dartmouth

http://www.dartmouth.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

September 17, 2025

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

September 17, 2025

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

Recurring Cystitis Episodes Could Indicate Urogenital Cancers in Middle-Aged Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.