• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

RNA microchips

Bioengineer by Bioengineer
November 6, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ribonucleic acid (RNA) is, along with DNA and protein, one of the three primary biological macromolecules and was probably the first to arise in early life forms. In the "RNA world"hypothesis, RNA is able to support life on its own because it can both store information and catalyze biochemical reactions. Even in modern life, the most complex molecular machines in all cells, the ribosomes, are made largely of RNA. Chemists at the Faculty of Chemistry of the University of Vienna and at McGill University have developed a new synthetic approach that allows RNA to be chemically synthesized about a million times more efficiently than previously possible.

RNA is ubiquitous in cells. It is responsible for shuttling information out of the nucleus, regulating gene expression and synthesizing proteins. Some RNA molecules, particularly in bacteria, also catalyze biochemical reactions and sense environmental signals.

The chemical synthesis of DNA and RNA goes back to the early days of molecular biology, particularly the efforts by Nobel Laureate Har Gobind Khorana in the early 1960s to decipher the genetic code. Over the years, the chemistry has improved considerably but RNA synthesis has remained much more difficult and slow due to the need for an additional protecting group on the 2'-hydroxy of the ribose sugar of RNA. Chemists at Department of Inorganic Chemistry of the Faculty of Chemistry of the University of Vienna and at McGill University have now been able to bring RNA synthesis a large step forward.

In order to increase the synthesis efficiency, the chemists joined two key concepts: photolithographic fabrication technology from semiconductor manufacture and the development of a new protecting group.

First, the chemists adapted the photolithographic fabrication technology from the semiconductor chip industry, commonly used for integrated circuit manufacture, for the chemical synthesis of RNA. Biological photolithography makes it possible to produce RNA chips with a density of up to one million sequences per square centimeter. Instead of using far ultraviolet light, which is used in the production of computer chips for silicon etching and doping, the researchers use UV-A light. "Shortwave ultraviolet light has a very destructive effect on RNA, so we are limited to UV-A light in the synthesis" explains Mark Somoza, of the Institute of Inorganic Chemistry.

In addition to the innovative use of photolithography, the researchers were also able to develop a new protecting group for the RNA 2'-hydroxyl group that is compatible with photolithographic synthesis. The new protecting group is acetal levulinyl ester (ALE), which also gives very high yields (over 99 percent) in the coupling reactions between the added RNA monomers in the extension of the RNA strand. "The combination of high-synthesis yield and ease of handling makes it possible to foresee the preparation of longer, and functional, RNA molecules on microchips" said Jory LiƩtard, post-doc of the group of Mark Somoza.

###

The research on RNA microarrays was funded by the Austrian Science Fund (FWF projects 23797, 27275 and 30596), the Swiss National Science Foundation (PBBEP2_146174), and the Natural Sciences and Engineering Council of Canada.

Media Contact

Mark Somoza
[email protected]
43-142-775-2643
@univienna

http://www.univie.ac.at/en/

http://dx.doi.org/10.1002/anie.201806895

Share12Tweet8Share2ShareShareShare2

Related Posts

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

Identifying Heat-Tolerant White Fulani Cows Using TOPSIS

November 5, 2025
blank

Sex-Based Cognitive Responses to PM2.5 Risk

November 5, 2025

Scientists Finalize Initial Drafts of Developing Mammalian Brain Cell Atlases

November 5, 2025

SPARTA: An Innovative Approach to Quantifying Evolutionary Uncertainty

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Do Steroids Improve Cerebral Palsy-Free Survival in Preemies?

DRG Payments and Unintended Care Quality Effects in China

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.