• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

RNA editing study shows potential for more effective precision cancer treatment

Bioengineer by Bioengineer
April 26, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

If there is one thing all cancers have in common, it is they have nothing in common. A multi-center study led by The University of Texas MD Anderson Cancer Center has shed light on why proteins, the seedlings that serve as the incubator for many cancers, can vary from cancer to cancer and even patient to patient, a discovery that adds to a growing base of knowledge important for developing more effective precision therapies.

Findings from the study, led by Han Liang, Ph.D., associate professor of Bioinformatics and Computational Biology, and Gordon Mills, M.D., Ph.D., chair of Systems Biology, were published in the April 26 online issue of Cancer Cell.

Liang's and Mills' team discovered how a particular type of RNA editing called adenosine to inosine (A-to-I) RNA plays a key role in protein variation in cancer cells. RNA editing is the process by which genetic information is altered in the RNA molecule. Once thought rare in humans and other vertebrates, RNA editing is now recognized as widespread in the human genome.

Since cancer can arise from vastly different protein types and mutations, the promise of individualizing therapies for each patient is reliant upon a better understanding of the protein "genome," an area of study called proteomics. Understanding the molecular mechanism contributing to protein variation and diversity is a key question in cancer research today, with significant clinical applications for cancer treatment.

"Using data from The Cancer Genome Atlas and the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, our study provides large-scale direct evidence that A-to-I RNA editing is a source of proteomic diversity in cancer cells," said Liang. "RNA editing represents a new paradigm for understanding the molecular basis of cancer and developing strategies for precision cancer medicine. If a protein is only highly edited in tumor proteins, but not in normal proteins, then it's possible that a specific drug could be designed to inhibit the edited mutant protein."

It has long been known that A-to-I RNA editing allows cells to tweak the RNA molecule resulting in nucleotide sequences which alter DNA "instructions" for how proteins are generated and how they are assembled within the cell.

The researchers demonstrated how A-to-I RNA editing contributes to protein diversity in breast cancer by making changes in amino acid sequences. They found one protein, known as coatomer subunit alpha (COPA), increased cancer cell proliferation, migration and invasion in vitro, following A-to-I RNA editing.

"Collectively, our study suggests that A-to-I RNA editing contributes to protein diversity at least in some cancers," said Mills. "It is an area of study that deserves more effort from the cancer research community to elucidate the molecular basis of cancers, and potentially developing prognostic and therapeutic approaches."

###

MD Anderson study team participants included Xinxin Peng, Ph.D., Xioyan Xu, Ph.D., Yumeng Wang, Zhicheng Zhou, Ph.D., and Kamalika Mojumdar, Ph.D., Department of Bioinformatics and Computational Biology; David Hawke, Ph.D., Shuangxing Yu, M.D., Kang Jin Jeong, Ph.D., Marilyne Labrie, Ph.D., and Yiling Lu, M.D., Department of Systems Biology; and Minying Zhang, Ph.D., and Patrick Hwu, M.D., Department of Melanoma Medical Oncology.

Other participating institutions included China Medical University, Beijing; Baylor College of Medicine, Houston; and The University of Texas Health Science Center at Houston McGovern Medical School;

Study funding was provided by the National Institutes of Health (CA168394, CA098258, CA143883, CA016672, CA209851, CA175486, and 1S10OD012304-1); the Cancer Prevention and Research Institute of Texas (RP140462 and RP130397); the National Scientific Foundation of China (8152777); the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine; The University of Texas System STARS Award; the Adelson Medical Research Foundation.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Cyclic Stretch Enhances Chondrogenesis in Stem Cells

September 20, 2025

Respect and Healthcare Equity for Transgender Communities

September 20, 2025

Collaborative Hypertension Care for Medicare Patients

September 20, 2025

Mentoring Tomorrow’s Neonatologists: Director Tips

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Environmental and Economic Effects of Farming Systems

Cyclic Stretch Enhances Chondrogenesis in Stem Cells

Respect and Healthcare Equity for Transgender Communities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.