• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rivers carry plastic debris into the sea

Bioengineer by Bioengineer
October 17, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Graphic: Susan Walter, UFZ

In the meantime, minute plastic particles can be found in the water in virtually every sea and river. This constitutes a serious and growing global environmental problem. There are enormous quantities of input each year and plastic weathers only very slowly. Marine life can be harmed by the tiny plastic particles floating in the water. One example of how this happens is when fish, seabirds or marine mammals mistake the particles for food and consume them. "It is still impossible to foresee the ecological consequences of this. One thing is certain, however: this situation cannot continue," says Dr. Christian Schmidt, a hydrogeologist at the UFZ. "But as it is impossible to clean up the plastic debris that is already in the oceans, we must take precautions and reduce the input of plastic quickly and efficiently."

However, in order to take practical measures to reduce plastic input, it will be necessary to answer the initial questions: Where does all the plastic come from anyhow? And how does it get into the sea? Schmidt and his team addressed these questions in a study that recently appeared in the current issue of Environmental Science & Technology journal. For this purpose, the researchers analysed various scientific studies that examined the plastic load – that is the quantity of plastic carried by the water – in rivers. They converted the results of the studies into mutually comparable datasets and determined the ratio of these figures to the quantity of waste that is not disposed of properly in the respective catchment area. "We were able to demonstrate that there is a definite correlation in this respect," says Schmidt. "The more waste there is in a catchment area that is not disposed of properly, the more plastic ultimately ends up in the river and takes this route to the sea." In this context, large rivers obviously play a particularly large role – not only because they also carry a comparatively large volume of waste on account of their larger discharge. Schmidt says, "the concentrations of plastic, i.e. the quantity of plastic per cubic metre of water are significantly higher in large rivers than small ones. The plastic loads consequently increase at a disproportionately higher rate than the size of the river."

The researchers have also calculated that the ten river systems with the highest plastic loads (eight of them are in Asia and two in Africa) – areas in which hundreds of millions of people live, in some cases – are responsible for around 90 percent of the global input of plastic into the sea. "Halving the plastic input from the catchment areas of these rivers would already be a major success", says Schmidt. "To achieve this, it will be necessary to improve the waste management and raise public awareness for the issue. We hope that our study will make a contribution to a positive development so that the plastic problem in our oceans can be curbed in the long run."

In future investigations, the UFZ team intends to find out how long plastic debris takes to reach the sea once it gets into a river. Does it take only a few months or even decades? "It is important to be aware of this as the impact of a measure becomes apparent only with a corresponding time delay as existing pollution has yet to be washed into the sea", explains Schmidt. "Only when we are aware of roughly how long plastic debris remains in the respective river system will it also be possible to assess a measure to improve the waste management system in the catchment area."

###

Media Contact

Christian Schmidt
[email protected]
49-341-235-1986
@ufz_de

http://www.ufz.de/

Original Source

http://www.ufz.de/index.php?en=36336&webc_pm=34/2017 http://dx.doi.org/10.1021/acs.est.7b02368

Share13Tweet8Share2ShareShareShare2

Related Posts

Chloroplast Genome Study of Agropyron Species Varieties

Chloroplast Genome Study of Agropyron Species Varieties

October 15, 2025
Astrocyte Glycogen Loss Triggers Sex-Dimorphic Behavioral Changes

Astrocyte Glycogen Loss Triggers Sex-Dimorphic Behavioral Changes

October 15, 2025

Key Technical Insights for RNA-Sequencing Experiments

October 15, 2025

Age and Sex Shape Memory and Circadian Rhythms

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emotional Fatigue: Nurses Battling Burnout in Ghana

Mapping Lymph Node Metastasis in Lung Adenocarcinoma

Fasting Reduces Liver Cancer Cell Growth and Alters Proteome

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.