• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

RIT wins Department of Energy award to improve wiring for advanced electric equipment

Bioengineer by Bioengineer
July 18, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Rochester Institute of Technology are working with corporate and government partners to develop more efficient, durable and cost-effective carbon nanotube technology in electronic components and systems that now use copper wiring.

"Depending on how bold a perspective you want to give, what we are embracing is a wire revolution," said Brian Landi, associate professor of chemical engineering in RIT's Kate Gleason College of Engineering. "That's the big picture view–if we could create affordable carbon wiring that has the electrical properties competitive with metal wiring, we would have a completely disruptive technology that would supplant metal wiring in select portable applications."

RIT researchers won an award of $1 million from the Department of Energy's (DOE) advanced manufacturing office for "Nanometal-interconnected carbon conductors for advanced electric machines." Landi is the principal investigator on the project, working with government partners at the U.S. Naval Research Laboratory and industry leaders Nanocomp Technologies and Minnesota Wire. With the implementation of numerous advanced manufacturing initiatives across the U.S., and RIT's involvement in seven of 14 of them, this DOE project is a parallel effort at the research stage to advance technologies that could be commercialized by the research team's corporate partners.

Bend a copper wire and eventually it breaks. Not so with nanocarbon-based wires, and the physical properties of this new materials technology could impact the longevity and durability of today's electrical devices. Metal-based wiring such as copper in electric devices many eventually be replaced by nanocarbon materials that are stronger, will not corrode, are lighter in weight and equally conductive.

Traditional metal wiring such as copper or aluminum is used in large and small electric devices to connect internal circuits and components that power aircraft and defense or commercial vehicles and equipment. The advantages of nanocarbon wiring over metal wires are in the mechanical properties where the exceptional flexure tolerance and better corrosion stability can extend the life and duty cycles of the wire. Using nanocarbon-based wiring, which is lighter and less dense than copper, could also improve fuel usage and save energy in portable applications such as unmanned aerial or underwater vehicles.

"Imagine all those electrical components that need to be replaced in maritime applications because of corrosion over time. If you had a carbon wire that was more tolerant, you wouldn't have to replace them as often," said Landi. He and RIT assistant professors Ivan Puchades, of electrical engineering, and Reginald Rogers, of chemical engineering, co-investigators on the project, bring expertise to the team in new chemical and metal materials development, microelectronic engineering and product commercialization.

Nanotechnology is the science of materials smaller than a human hair or DNA strand. More than working at that elemental scale, nanotechnology enables scientists to capitalize on the specific physical, chemical, mechanical and optical properties occurring at that scale, according to the U.S. National Nanotechnology Initiative. Nanomaterials such as carbon nanotubes can be combined into structures which can be formed in various shapes or composite materials including different gauge wiring for electrical components.

"We are well-positioned to do this with more than a decade of research in carbon nanotube technology, specifically for wires and cables, and we've had success over the years as the first to publish carbon nanotube coaxial cables within military specifications. We are continually improving the current-carrying capacity of these carbon nanotube-based wires as well. The differentiator in the present work is, we are looking for the right combination of using carbon nanotubes with nano-metals to create a better transport at the nano-scale. This is going to require us to find the right chemical treatment technology to infiltrate the nano-tube network with metals and the right metals," said Landi who is also director of the Carbon Conductors & Advanced Battery Group, a team affiliated with RIT's NanoPower Research Laboratory (NPRL). Puchades and Rogers will focus on various types of electrochemical metal deposition and chemical functions required to achieve nanometal-interconnected carbon conductors, respectively. The team also re-unites with former NPRL and RIT microsystems engineering graduate Cory Cress, a materials research engineer at the U.S. Naval Research Laboratory in Washington, D.C., and co-author on a recently published article in the Journal of Applied Physics about carbon nanotube wires and high-current demands, sponsored by the Office of Naval Research.

###

Media Contact

Michelle Cometa
[email protected]
585-475-4954
@ritnews

http://www.rit.edu

http://www.rit.edu/news/story.php?id=62499

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Liver Transplantation for Cancer with Genomics

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.