• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Riddle of the sphinx

Bioengineer by Bioengineer
March 22, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Why is the heart slightly on the left side of the body for most people? Why is DNA almost always a right-handed helix? Same with alpha helices, the building blocks of proteins. Chirality, or handedness, is everywhere in biology, but the reasons can be a mystery.

Sphinx tile - order 1, 2, 3

Credit: Huber, et. al, Physical Review Research, 2024

Why is the heart slightly on the left side of the body for most people? Why is DNA almost always a right-handed helix? Same with alpha helices, the building blocks of proteins. Chirality, or handedness, is everywhere in biology, but the reasons can be a mystery.

Greg Huber, a biophysicist and researcher at the Chan Zuckerberg Biohub San Francisco, spent three years exploring these questions and more using a simple asymmetric shape that lives on the triangular lattice, and that has received little academic attention – the sphinx tile. He and his collaborators – Craig Knecht, Walter Trump, and Robert Ziff – found unexpected properties related to its chirality. Their study, “Entropy and chirality in sphinx tilings,” was published recently in Physical Review Research.

Composed of six equilateral triangles (a hexiamond), the sphinx has an intrinsic handedness, coming in either left- or right-handed orientations. It is the only known asymmetric hexiamond that can tile every order of itself, meaning all sphinxes scaled by a factor n can be tiled by n•n smaller unit sphinxes. In other words, an order-2 sphinx can be made from 4 sphinx tiles, an order-3 sphinx can be made from 9, and so on. The numbers of tile arrangements or layouts possible, beginning from the single unit sphinx, start out small: 1, 1, 4, 16, …, but not for long.

As the number of sphinxes in a tiling goes up, the number of possible layouts increases superexponentially. For example, an order-5 sphinx has 153 possible tilings (shown below), order-6 has nearly 72,000 tilings, and order-13 a whopping 1030, or 10 to the order 30! (That’s a 1 with 30 zeros.)

The asymmetry of the tile provided rich avenues to explore chirality. Take the simple matter of placing two tiles side by side. There are 46 (or 47, depending on how you count) different ways for two sphinx tiles to form a dyad. (In contrast, there is only one way for two unit squares to form a dyad.)

And they can be tiled in such a way that they have low chiral energy, meaning most neighboring sphinxes are in the same orientation or high chiral energy. 

Huber, leader of the Theory Group at the San Francisco Biohub, emphasizes that this endeavor was more than an abstract exercise. He notes that geometry and chirality both have important but often overlooked connections to biology. Virus capsids, for example, have a geometric symmetry (the “quasi-equivalence principle”) based on the same lattice.

“The universe shouldn’t favor one handedness over another, but at scale after scale, chiral preferences emerge,” Huber says. “Chirality can be very mysterious, and the sphinx tiles’ surprising chiral interactions were the motivation for this work.”



Journal

Physical Review Research

DOI

10.1103/PhysRevResearch.6.013227

Article Title

Entropy and chirality in sphinx tilings

Article Publication Date

4-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025
blank

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

August 22, 2025

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Hidden Turbulence in Polymer Fluids

Chinese Neurosurgical Journal Highlights Rare Central Nervous System Tumor Study

AI Detects Cancer Cases Overlooked by Pathologists

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.