• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Revving up innate control of viral infection requires a three-cell ignition

Bioengineer by Bioengineer
July 5, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(PHILADELPHIA) — One of the most important cell types for controlling certain viral infections are natural killer (NK) cells. As part of the innate and rapid immune response, NK-cell recruitment and activation was thought to be a straightforward process. New research shows that NK-cell recruitment and activation requires a rather carefully choreographed interaction of three cell types in the headquarters of the slower adaptive immune-activation: the lymph node.

In a new paper published in Cell Reports, Luis J. Sigal, PhD, Professor Microbiology and Immunology at Jefferson (Philadelphia University + Thomas Jefferson University) and colleagues show that after a mousepox infection in the skin of mice, sentinel immune cells called dendritic cells become infected and rapidly migrate to the draining lymph node carrying the virus along. Within the first 24 hours after the initial infection, these dendritic cells perform at least two tasks in the draining lymph node. First, they produce chemokines that specifically attract inflammatory monocytes to the draining lymph node. Second, the dendritic cells stimulate the few NK cells already in the draining lymph node to produce a cytokine known as interferon gamma that stimulates the recently arrived monocytes to produce other chemokines that attract reinforcements in the form of larger numbers protective NK cells to the draining lymph node.

The work unveils a cascade of events whereby three types of innate immune cell collaborate to recruit protective NK cells, which are essential for resistance to mousepox.

"Although we knew that that cytokines and chemokines are important for NK-cell recruitment to infected tissues," said Dr. Sigal, "we did not know that a single innate cell type – the NK cell — would require the participation of multiple cells, each with a defined task."

This complexity suggests that deficiencies in multiple cell types may affect a single protective mechanism and result in uncontrolled viral infection. The results could have parallels in other virus types and possibly in human immunity.

###

The work was supported by NIAID grants R01AI110457, R01AI065544 and AG048602 and F32AI129352. The authors report no conflicts of interest.

Article reference: Eric Wong, Ren-Huan Xu, Daniel Rubio, Avital Lev, Colby Stotesbury, Min Fang, and Luis J. Sigal, "Migratory dendritic cells, Group 1 innate lymphoid cells, and inflammatory monocytes collaborate to recruit NK cells to the virus infected lymph node," Cell Reports, https://www.cell.com/cell-reports/fulltext/S2211-1247(18)30899-4 DOI: 10.1016/j.celrep.2018.06.004, 2018.

Media Contact: Edyta Zielinska, [email protected], 215-955-7359.

Media Contact

Edyta Zielinska
[email protected]
215-955-7359
@JeffersonUniv

http://www.jefferson.edu/

http://dx.doi.org/10.1016/j.celrep.2018.06.004

Share12Tweet7Share2ShareShareShare1

Related Posts

Functional Archaellum Structure in Chloroflexota Bacteria

Functional Archaellum Structure in Chloroflexota Bacteria

September 17, 2025
blank

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Streptomyces vinaceusdrappus: Nano-Selenium Biosynthesis and Benefits

UMass Amherst and Embr Labs Unveil AI Algorithm Capable of Accurately Predicting Hot Flashes

HMH Specialists Uncover Key Pathway Triggering Cellular Immunity in CDI Lab Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.