• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Revolutionary AI-enhanced model predicts wheat health across diverse soils using drone data

Bioengineer by Bioengineer
December 11, 2023
in Health
Reading Time: 4 mins read
0
Fig. 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In agricultural and remote sensing research, accurately estimating wheat’s Leaf Area Index (LAI) using unmanned aerial vehicle-based multispectral data is essential for monitoring crop health and growth. Traditionally, LAI measurement is accurate but laborious. Recent advancements have introduced hybrid methods combining radiative transfer models with machine learning, showing promise due to their efficiency and applicability. However, these methods face challenges, particularly in diverse soil backgrounds, where soil-specific models are required but lack scalability. Current research focuses on developing a “background-resistant” model for stable and accurate LAI estimation across various soil types and environmental conditions, particularly beneficial in areas with variable soil characteristics and low LAI, like dryland regions.

Fig. 1

Credit: Plant Phenomics

In agricultural and remote sensing research, accurately estimating wheat’s Leaf Area Index (LAI) using unmanned aerial vehicle-based multispectral data is essential for monitoring crop health and growth. Traditionally, LAI measurement is accurate but laborious. Recent advancements have introduced hybrid methods combining radiative transfer models with machine learning, showing promise due to their efficiency and applicability. However, these methods face challenges, particularly in diverse soil backgrounds, where soil-specific models are required but lack scalability. Current research focuses on developing a “background-resistant” model for stable and accurate LAI estimation across various soil types and environmental conditions, particularly beneficial in areas with variable soil characteristics and low LAI, like dryland regions.

In May 2023, Plant Phenomics published a research article entitled by “A Generic Model to Estimate Wheat LAI over Growing Season Regardless of the Soil-Type Background“.

This research aimed to develop a generic machine learning-based model for predicting wheat Leaf Area Index (LAI) across diverse soil backgrounds for the entire growth season, improving upon previous soil-specific models. The model’s simulation performance was initially tested on independent synthetic data. Random Forest Regression (RFR) models trained on synthetic data showed varying performance based on soil reflectance similarity, with the baseline model achieving an R² of 0.8 on similar soil reflectance but dropping to 0.2 on dissimilar soils. Broadening the reflectance domain of the training soil background improved the model’s robustness, but enhancing canopy-spectral inputs proved more effective for stable LAI prediction across soil backgrounds. In experiments, the RFR models were tested on both synthetic and augmented data at different growth stages. The improvement of LAI prediction was more pronounced when improving canopy-spectral inputs rather than just broadening the training soil background’s reflectance domain. The defaultMulti2.VIc3 model, using an extended reflectance domain and improved canopy-spectral indicators, was selected for further evaluation due to its stability across soils and fewer input variables. It demonstrated good estimation accuracy for different soil backgrounds, but tended to overestimate LAI for values between 2 and 5 and underestimate for LAI over 5. The model was further evaluated at different growth stages throughout the growing season, showing substantial improvement in prediction accuracy, especially at early and late stages. It reliably captured the seasonal LAI dynamics under different treatments in terms of genotypes, planting densities, and water-nitrogen managements.

The research concluded that a background-resistant model can be effectively established using simulation data, providing stable and accurate GAI prediction from isolated UAV-based multispectral images over a wheat growing season with diverse soil backgrounds in field conditions. This model represents a significant advancement in predicting LAI without the need for ground calibration, making it a promising tool for agricultural monitoring and management.

###

References

Authors

Qiaomin  Chen1,2*, Bangyou  Zheng2, Karine  Chenu3,  and Scott C.  Chapman1

Affiliations

1School  of  Agriculture  and  Food  Sciences,  The  University  of  Queensland,  St  Lucia,  QLD,  Australia.  

2Agriculture and Food, CSIRO, Queensland Bioscience Precinct, St Lucia, QLD, Australia.

3The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Toowoomba, QLD, Australia.

About Qiaomin Chen

Dr. Qiaomin Chen is a postdoctoral research fellow at SAF. She is passionate about deploying and developing innovative technologies in solving practical problems in agriculture production, especially in precision agriculture and modern breeding. Her current research interests mainly lie in plant phenotyping, crop modelling, machine learning and climate adaptation, with a particular interest in using simulation analysis to provide recommendations for field experiment design, phenotyping strategies, characterization of crop growth.



Journal

Plant Phenomics

DOI

10.34133/plantphenomics.0055

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A Generic Model to Estimate Wheat LAI over Growing Season Regardless of the Soil-Type Background

Article Publication Date

23-May-2023

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Career Adaptability Patterns in Chinese Cardiovascular Nurses

October 7, 2025

Once-Weekly Insulin Icodec: Efficacy and Safety in India

October 7, 2025

Hydrogen Sulfide Shields Spinal Cord via Rac1 Persulfidation

October 7, 2025

Unveiling Thymbra spicata’s Bioactive Compounds and Actions

October 7, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Gas Transfer in PEM Fuel Cells

Career Adaptability Patterns in Chinese Cardiovascular Nurses

Once-Weekly Insulin Icodec: Efficacy and Safety in India

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.