They published their work on Dec. 21st in Energy Material Advances.
Credit: Jinfeng Sun, Hebei University of Science and Technology
They published their work on Dec. 21st in Energy Material Advances.
“The electrocatalytic hydrogen evolution reaction (HER) produces considerable hydrogen energy by water splitting without carbon emission, which also plays a key role in the solar-photovoltage and the wind power industry.” said paper author Jinfeng Sun, associate professor School of Materials Science and Engineering, Hebei University of Science and Technology. “TMNs have been considered as Pt-like electrocatalysts for Pt-like electronic structures, resulting in high electronic conductivities, strong chemical stabilities and eminent electrocatalytic activities on HER.”
Sun explained that TMNs have several significant advantages as an alternative to Pt-based HER electrocatalysts, especially high metallic conductivities, corrosion resistance and Pt-like d-band structure, which are responsible for intrinsic HER activities.
“Although the electrocatalytic performances of some TMNs have been found more efficient than the original transition metals and other transition metallic compounds, the electrocatalytic activities of TMNs still exist a lot of room for improvement as promising Pt candidates.” Sun said. “Herein, the recent improvement strategies for intrinsic electrocatalytic activities of TMN catalysts on HER by electronic structure modulation were reviewed, such as facet, alloying, doping, vacancy, heterostructure as well as hybridization.”
“Anisotropic facets with high energy and isotropic nonfacet with unsaturated coordination effectively expedited the intrinsic actives of TMNs by tailoring the electron structures with d-band center near Fermi level. Compared with crystalline counterparts, the intrinsic electrocatalytic activities of TMNs could be remarkably boosted by electron modulation of unsaturated amorphous structure. Sun said. “But the control synthesis of desired facets and the exact unsaturated degree as well as the regulation of unsaturated site location were much difficult. Additionally, the atomic configurations of amorphous nonfacet structures were burdensome to determine, arduously revealing HER mechanism.”
Sun said the electron density of doping atom was the main influence factor to the electrochemical activities of TMNs. Hetero-doping metal with relatively low d-band electron density (e.g., V or Nb) was the most efficient strategy for intrinsic activity improvement than others. The strategy was limited by the heterogeneous distribution of doping atom, which made model construction and reaction mechanism difficult to explore.
“Much higher electron density of Ni with lower valence state was redistributed near the Fermi level, leading to higher conductivity, stronger H2O adsorption and weaker ∆GH*.” Sun said. “Special treatments (e.g., magnetron sputtering and nitrogen plasma) were usually required for nitrogen vacancy synthesis. Also, it was difficult to control the uniform distribution of nitrogen vacancies. Furthermore, large amounts of vacancies would result in severe lattice distortion, and poor HER activity for TMNs.”
“The electronegativity and lattice matching degree of the direct connected components played vital roles to electrochemical activity of heterostructure catalysts.” Lin said. “two components with big differences in electronegativity and crystalline structure (e.g., Co/Co2N/CF or Mo2N/CeO2@NF) resulted in more distinguishing electrocatalytic performances for the faster reaction kinetics, higher electron transfer capacity and stronger lattice strain, etc.” And “However, the complicated sequence treatments for heterostructure synthesis restricted its large-scale application. Furtherly, more nanointerface construction in heterostructure was rather difficult to be achieved, which limited the full exploration of heterostructure merits.”
Hybridization strategy was one common method for efficient HER electrocatalyst for the facile synthesis without exquisite treatment. The HER kinetics were boosted for the large differences in electronegativity favoring the electron transfer between TMNs and hybridized components. Sun said control of precise regulation with uniform distribution of hybridizations was rather difficult. And the electron transfer between the non-direct contacted components was uncertainty. This made the electrocatalytic mechanism illustration became complicated.
After scrutinizing the researches modulated by six strategies, alloying and heterostructure TMNs were the most widely explored for their high intrinsic activities, Lin said, lots of TMNs heterostructures especially had shown extremely low overpotentials and Tafel slops. The heterostructure of TMN resulted in DGH* much closer to zero, strong H2O adsorption energy and low H2O dissociation energy.
“Although significant breakthroughs for improvement intrinsic activities of TMNs by electronic structure modulation have been made, there is still a lot room for the scale application of TMNs in commercial water electrolyzer.” Sun said. “The future development of TMNs is proposed to focus on developing facile synthesis methods, elucidating regulation mechanism and catalytic mechanism, enhancing activity and stability.” And “continuous research and development of excellent TMN electrocatalysts on HER should be carried out for the scalable application in industrial water splitting.”
Other contributors include Han-Ming Zhang, Jian-Jiang Wang, Yongqiang Meng, and Jinfeng Sun, School of Materials Science and Engineering, Hebei University of Science and Technology; Fushen Lu and Muwei Ji, College of Chemistry and Chemical Engineering, Shantou University; Caizhen Zhu and Jian Xu, Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University.
The following authors have additional affiliations: Han-Ming Zhang, Jian-Jiang Wang, Yongqiang Meng, and Jinfeng Sun, Hebei Key Laboratory of Flexible Functional Materials, Shijiazhuang, Hebei.
This work was supported by National Natural Science Foundation of China (52101251), Natural Science Foundation of Hebei Province (B2021208030), College Students Innovation Training Program of Hebei Province (S2021113409001) and STU Scientific Research Initiation Grant (NTF22018).
###
Reference
Authors: HAN-MING ZHANG, JIAN-JIANG WANG, YONGQIANG MENG, FUSHEN LU, MUWEI JI , CAIZHEN ZHU , JIAN XU, AND JINFENG SUN
Title of original paper: Review on Intrinsic Electrocatalytic Activity of Transition Metal Nitrides on HER
Journal: Energy Material Advances
DOI: 10.34133/energymatadv.0006
Affiliations:
1School of Material Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.
2Hebei Key Laboratory of Flexible Functional Materials, Shijiazhuang, Hebei 0500180, China.
3College of Chemistry and Chemical Engineering, Shantou University, Shantou, Guangdong 515000, China.
4Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
About Authors:
Han-Ming Zhang (First Author)
Han-Ming Zhang received her BS degree in Chemistry from Nanchang University in 2010. Then she joined Prof. Song Ye’s group at University of Chinese Academy of Sciences (Institute of Chemistry, Chinese Academy of Sciences) and received her Ph.D. degree in Organic Chemistry in 2015. Subsequently, she worked as a postdoctor at the College of Chemistry and Environmental Engineering, Shenzhen University, under the supervision of Prof. Caizhen Zhu. Currently, she is a lecture of School of Materials Science and Engineering, Hebei University of Science and Technology. Her research interests include energy materials for electrocatalysis on hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel cells and organic synthesis. As the first author or corresponding author, she has published more than 10 papers on SCI journals, such as Chem. Eng. J., Inorg. Chem. Front., Org. Chem. Front., J. Power Sources., Org. Lett., Int. J. Hydrogen Energy, Org. Biomol. Chem., Asian J. Org. Chem., etc. Her h-index was 11.
Muwei Ji (Corresponding author)
Muwei Ji received his Ph.D. degree from Beijing Institute of Technology in 2019. Then he joined Prof. Caizhen Zhu’s group as a postdoctor. He current is a professor of College of Chemistry and Chemical Engineering, Shantou University. His research interests are energy storage and functional materials for batteries and electrocatalysis on hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and fuel cells. As the first author or corresponding author, he has published more than 30 papers on SCI journals, such as Nano Res., Chem. Eng. J., ACS Appl. Mater. Interfaces, J. Phys. Chem. C, CrystEngComm, Appl. Surf. Sci., Chem. Comm., Inorg. Chem. Front., J. Phys. Chem. Lett., etc. His h-index was 20.
Caizhen Zhu (Corresponding author)
Caizhen Zhu received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences in 2012. Currently, he is a professor of College of Chemistry and Environmental Engineering, Shenzhen University. His research interests are high performance fiber, high throughput in-situ analysis characterization, energy storage and functional materials for electrocatalysis on electrocatalysis and batteries. As the first author or corresponding author, he has published more than 100 papers on SCI journals, such as Adv. Energy Mater., Adv. Funct. Mater., Nano Res., Chem. Eng. J., ACS Sustain. Chem. Eng., CrystEngComm, Appl. Surf. Sci., Polymers, Compos. Sci. Technol., etc. His h-index was 30.
Jinfeng Sun (Corresponding author)
Jinfeng Sun received his Ph.D. degree from Yanshan University in 2010. Currently, he is a associate professor of School of Materials Science and Engineering, Hebei University of Science and Technology. His research interests are powder metallurgy, energy storage and functional materials on batteries, electrocatalysis high thermal conductivity materials and solid oxide fuel cell. As the first author or corresponding author, he has published more than 10 papers on SCI journals, such as Inorg. Chem. Front., Appl. Surf. Sci., J. Alloys Compd., Int. J. Hydrogen Energy, Chin. Phys. Lett., Adv. Mater. Res., etc.
Journal
Energy Material Advances
DOI
10.34133/energymatadv.0006
Method of Research
Experimental study
Subject of Research
Not applicable
Article Title
Review on Intrinsic Electrocatalytic Activity of Transition Metal Nitrides on HER
Article Publication Date
21-Dec-2022
COI Statement
The authors declare that they have no competing interests.