• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Reversible superoxide-peroxide conversion drives high-capacity potassium-metal batte

Bioengineer by Bioengineer
December 16, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

There is an urgent need for high-energy-density rechargeable batteries to further satisfy the ever-growing demand for electrical energy storage devices. Triggering the O-related anionic redox activities (e.g. typical Li/Na/K-O2 battery, and Li/Na-rich cathodes) have been regarded as the most promising capacity-boosting strategy for batteries. However, the practical realization of Li/Na/K-O2 battery, a gas-open cell architecture, is severely plagued by some gaseous O2-related intrinsic defects. For example, porous air cathode is easily clogged by hosting the solid O2 reduction products, resulting in the practical stored energy reveals far below the theoretical value. Moreover, due to the phase changes between gaseous O2 and solid Li/Na/KxO, sluggish kinetic obstacle leads to large round-trip overpotential. Besides, air purifier devices or O2 storage cylinder have to be equipped, and further drag the energy density promotion.

In a new research published in the Beijing-based National Science Review, scientists at the Nanjing University in China, and at National Institute of Advanced Industrial Science and Technology in Japan present the realization of a reversible superoxide-peroxide conversion in a K-based high-capacity rechargeable sealed battery device.

Co-authors Yu Qiao and Haoshen Zhou likewise outline the potential development directions and design principle of this reversible superoxide/peroxide (KO2/K2O2) inter-conversion on KO¬2-based cathode system for potassium-ion battery (KIB) technology.

“Traditionally, A novel synergistical modification ideal is abandoning the utilization of gaseous O2, and controlling the high-energy-density oxygen-based redox reaction processes within the redox interconversion among different solid phases (a more commercialized sealed cell environment).” they state in an article titled “A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion”

“In 2019, our group successfully trapped the O-related redox activity within a reversible peroxide-oxide (Li2O2/Li2O) interconversion stage (Nature Catalysis, 2019, doi.org/10.1038/s41929-019-0362-z), and achieved a novel high-energy-density Li-ion battery. However, to the best of our knowledge, the interconversion between superoxide-peroxide has not been reported yet, which is another potential high-energy-density redox candidate.” Qiao and Zhou state. They also point out that “The most difficult point to realize the reversible superoxide-peroxide interconversion focused on the stabilization of superoxide.”

“In this study, we originally achieved the reversible interconversion between superoxide (KO2) and peroxide (K2O2) in a rechargeable battery system, and made great improvements on the specific capacity for potassium-ion (K-ion) battery.” they state.

They point out that there are two key issues achieved in this work:

1) On the aspect of “Chemistry”: For the first time, the reversible superoxide-peroxide interconversion has been realized, and they successfully restrained the irreversible oxygen loss (O2 evolution, etc.). By the employment of advanced systematical operando spectroscopies (in-situ Raman + SERS + GC-MS), the authors originally found the formation of nucleophilic superoxo anion (O2-) was the chief criminal for the irreversible redox behavior. Moreover, by the sharp comparison verse blank group, they proved the hybridization between RuO2 catalyst and K-deficient K1-xO2 can induce the formation of stable surface protection layer (proved by hard-XAS spectroscopy) and prevent the oxygen loss. For the first time, the essential difference between moderate superoxide and dangerous superoxo anion (O2-) has been clarified. “We believe these findings would be full of novelty on the viewpoint of “Chemisty”.” they state.

2) On the aspect of “Battery”: For the practical battery technology, the development of K-ion battery is severely hindered by the limited capacity of cathode candidates (typically around 100 mAh/g cathode capacity). In this work, benefitting from the high-capacity KO2/K2O2 redox couple, the cathode capacity has been largely boosted to 300 mAh/g. This sealed battery system is totally different from previous reported gas-open K-O2 battery (O2/KO2 conversion). Moreover, the round-trip overpotential has been successfully restrained within 0.2 V (at quite high current rate of 300 mA/g), indicating a high energy efficiency around 90%. The reversible cycling can be achieved around 900 times, indicating remarkable long-term cycling stability. Besides, not only for half-cell mode, after electrolyte modification, a practical full-cell has been fabricated with high-energy-density and superior cycle stability. “We believe these large improvements present great significance on the practical “Battery” level.” Qiao and Zhou state.

“We believe that the demonstration of a superoxide/peroxide redox dominated battery system with ultralong cycle stability will open up a new gate and spur the development of more effective catalytic cathode frameworks.” Qiao and Zhou state. “More importantly, the identification of the feasibility (from the mechanism/chemistry perspective) and the realization of the impressive cyclability (from the practical viewpoint) herein would stimulate the development of oxygen-based anionic redox activity in enhancing the energy density of rechargeable battery technologies.” they added. “The desirable features revealed in the current battery system also triggers a design direction for synergistically combining the electrode and electrocatalyst materials, engineering the next-generation high-energy-density battery technologies.”

###

This research received funding from the National Basic Research Program of China and the National Natural Science Foundation of China.

See the article:

Yu Qiao, Han Deng, Zhi Chang, Xin Cao, Huijun Yang, and Haoshen Zhou

A high-capacity cathode for rechargeable K-metal battery based on reversible
superoxide-peroxide conversion

Natl Sci Rev (Nov.27 2020)

https://doi.org/10.1093/nsr/nwaa287

Media Contact
Haoshen Zhou
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa287

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa287

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025
Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

Enhanced Zinc Anodes Achieved Through In Situ BiOCl/Bi Heterostructure Enabling Bidirectional Ion–Electric Field Synergy and Ultra-Stability Across Wide Temperatures

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microwave Extraction of Starch from Litchi Kernels

AI Awareness and Adoption in Greater Kumasi Residents

Myeloid Cell Signaling Identified as Key Driver of Immunotherapy Resistance in Kidney Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.