• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Response to fire impacts water levels 40 years into future

Bioengineer by Bioengineer
January 10, 2020
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photos courtesy of USDA Forest Service.

Salvage logging and re-seeding a forest after a wildfire helps reduce flooding and returns water levels to normal faster, according to a new paper from a Washington State University researcher.

The paper, just published in the journal Hydrological Processes, shows that water levels are still increased up to 40 years after a fire.

“Trees work like straws, pulling water up out of the ground,” said Ryan Niemeyer, an adjunct faculty member in WSU’s Center for Sustaining Agriculture and Natural Resources (CSANR). “When you remove them, the water has to go somewhere. Flooding is common after a wildfire, as is elevated stream flow in subsequent summers. But seeing that the effect lasts for up to 40 years is a little surprising and certainly a new finding.”

Niemeyer wrote the paper with Kevin Bladon at Oregon State University and Richard Woodsmith of Woodsmith Watershed Consulting.

Natural fire starts a long-term experiment

Their research looked at the U.S. Forest Service’s Entiat Experimental Forest in north-central Washington, which burned in 1970. The fire likely started from a lightning strike, Niemeyer said.

Three distinct areas of the forest were observed, with two of them having salvage logging done to remove what remained of the burned trees. Those areas were also fertilized and native seeds were dropped on the area. The third area was left untouched.

The fire interrupted a planned logging experiment in the forest, so researchers at the time switched to monitoring the effects of wildfire, said Niemeyer, who grew up hunting and fishing in the Entiat watershed.

The original studies in the early ’70s showed that water levels in the watershed increased significantly after the fire. But the measurement equipment was removed after a few years, said the native Washingtonian.

Past decisions impact today

Fast forward to 2004, when a new grant allowed for stream flow monitoring equipment to be re-installed to measure the long-term impact the fire had on water levels. The measurement period was from 2004-11, after which Niemeyer, a hydrologist who is also a post-doctoral researcher at UC-Santa Barbara, and his colleagues spent five years analyzing the data.

After roughly 40 years, only one of the three areas still had water levels above the pre-fire baseline: the section that was left alone to recover.

“If you visit today, you can easily see that area has less mature vegetation compared to the re-seeded sections,” Niemeyer said. “The trees in the re-seeded sections are much bigger, and water levels are back to normal.”

Increased water levels can be positive and negative, he said. If you want more water coming down a stream for increased access to water for irrigation, for example, then you wouldn’t want to salvage any of the logs or re-seed the area.

But that extra water can have other impacts on the land, he said. Trees help hold soil in place when it rains, so erosion is higher in areas that aren’t re-seeded. That increases sediment going into the watershed, which can impact fish and other wildlife.

“It’s really a complex set of interactions, and each wildfire situation effects water and water usage differently,” Niemeyer said. “But now we know how long a fire impacts nearby water, and that those impacts can be reduced faster.”

Since it’s now been eight years since the sensors were removed, and 15 since they were first re-installed, the researchers are hoping to start another round of monitoring in the area. They plan to write a grant proposal to fund re-installing the sensors to see if, and when, the untouched area returns to normal water levels.

###

Media Contact
Scott Weybright
[email protected]
509-335-2967

Original Source

https://news.wsu.edu/2020/01/09/response-fire-impacts-water-levels-40-years-future/

Related Journal Article

http://dx.doi.org/10.1002/hyp.13665

Tags: AgricultureForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.