• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Resourceful viral protein combats monkey and human defenses differently

Bioengineer by Bioengineer
March 24, 2022
in Biology
Reading Time: 3 mins read
0
Fig 1. Antagonism of a human anti-viral protein by a virus isolated from a wild monkey
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) find that different parts of simian immunodeficiency virus viral protein U are needed to interact with the same host protein in monkeys versus humans

Fig 1. Antagonism of a human anti-viral protein by a virus isolated from a wild monkey

Credit: Department of Molecular Virology, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) find that different parts of simian immunodeficiency virus viral protein U are needed to interact with the same host protein in monkeys versus humans

Tokyo, Japan – In the epic battle between hosts and viruses, viruses are constantly evolving to be more infectious. Now, researchers from Japan have found that human genes also evolve to help protect our bodies from invasion by life-threatening viruses.

In a study published in December in Journal of Virology, researchers from Tokyo Medical and Dental University (TMDU) have revealed that a monkey variant of human immunodeficiency virus (HIV) can counteract a human protein that defends against viral infection in a different way than it counteracts the same protein in monkeys.

Simian immunodeficiency virus (SIV) is closely related to HIV, and both viruses tend to use similar strategies to escape their hosts’ defenses, which also tend to be very similar. One of these defenses is a protein called tetherin (also known as BST-2 or CD317). If a cell is invaded by the virus, tetherin prevents the virus from leaving the cell and infecting other nearby cells. To counter this measure, HIV and SIV make a protein called viral protein U (Vpu) that attaches to tetherin and blocks its effects.

“Because viruses adapt to their hosts, HIV Vpu is most effective against human tetherin, while SIV Vpu is most effective against monkey tetherin,” explains Dr. Takeshi Yoshida, senior author of the study. “But in at least one unusual case, a strain of SIV that typically infects the greater spot-nosed monkey can also overcome human defenses, which suggests that SIV potentially infects humans.”

To explore how SIV Vpu affects human tetherin, the researchers mutated different parts of the protein and looked at how well it blocked tetherin’s normal activities and effects.

“The results were unexpected,” says Dr. Weitong Yao, lead author. “We discovered that the parts of SIV Vpu that are needed to counteract monkey tetherin  are not the same as the parts needed to counteract human tetherin.” 

The researchers pinpointed seven specific amino acids (the basic building blocks of proteins) that are needed for SIV to block human tetherin. Importantly, these seven amino acids were not essential for the virus to block monkey tetherin.

“What this tells us is that SIV Vpu may use a totally distinct mechanisms to counteract the effects of monkey and human tetherin,” says Yoshida.

Given the different approaches that this viral protein uses to neutralize monkey and human tetherin, it seems likely that the gene encoding human tetherin faced different pressures over the course of evolution than the gene encoding monkey tetherin. The results from this study could help us better understand the evolution of host genes as a result of host-pathogen interactions.

###

The article, “Simian Immunodeficiency Virus SIVgsn-99CM71 Vpu Employs Different Amino Acids To Antagonize Human and Greater Spot-Nosed Monkey BST-2,” was published in Journal of Virology at DOI: 10.1128/JVI.01527-21.
 



Journal

Journal of Virology

DOI

10.1128/JVI.01527-21

Article Title

Simian Immunodeficiency Virus SIVgsn-99CM71 Vpu Employs Different Amino Acids To Antagonize Human and Greater Spot-Nosed Monkey BST-2

Article Publication Date

24-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.