• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers unveil new collection of human brain atlases that chart postnatal development

Bioengineer by Bioengineer
January 26, 2023
in Health
Reading Time: 3 mins read
0
Pew-Thian Yap
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Human brain atlases can be used by medical professionals to track normative trends over time and to pinpoint crucial aspects of early brain development.

Pew-Thian Yap

Credit: Pew-Thian Yap

Human brain atlases can be used by medical professionals to track normative trends over time and to pinpoint crucial aspects of early brain development.

With these atlases, they are able to see what typical structural and functional development looks like, making it easier for them to spot the symptoms of abnormal development, such as attention-deficit/hyperactivity disorder (ADHD), dyslexia, and cerebral palsy.

Pew-Thian Yap, PhD, professor in the UNC Department of Radiology, and colleagues in the department and the Biomedical Research Imaging Center (BRIC) have created a new collection of month-by-month infant brain atlas (IBA) that capture fine spatiotemporal details of the early developing brain.

In this work, published in the journal Nature Methods, the scientists created a set of month-specific surface-volume longitudinal brain atlases of infants from 2 weeks to 2 years of age. Sahar Ahmad, PhD, research instructor of radiology, was lead author on the paper.

“Brain atlases are key to understanding neurodevelopment through the lenses of cellular composition, neural pathways, and functional organization,” Yap said. “The human brain atlases created by our team depict the early development phase of postnatal neurodevelopment. Our atlases will be a resource valuable to brain scientists in unraveling key normative and aberrant traits of, arguably, the most important phase of human brain development.”

Throughout the first two years of life, the human brain undergoes a whole range of cellular processes that drive the rapid growth of the infant brain. It is during this period that the brain changes structurally and reorganizes its neural circuits. When development goes awry, it can have detrimental effects on the quality of life, including heightened risk for autism, schizophrenia, and ADHD.

By using the IBA, researchers are able to capture changes in brain structure, cortical geometry, and tissue contrast.

The atlases also revealed that cortices in the temporal, parietal, and prefrontal regions of the brain are thicker than the primary visual and sensorimotor cortices. This is consistent with the finding that the higher-order functions of the infant brain – such as attention, working memory, inhibition, and problem-solving – mature more slowly than the areas of the brain that are responsible for the visual, motor, and sensory functions.

Overall, the surface-volume consistent IBA accurately captures the infant growth trajectories and does so with rich anatomical details. These atlases recorded the monthly changes in the normally developing brains’ size, shape, and cortical geometry as well as their tissue contrast, volume, and microstructural characteristics from 2 weeks to 2 years of age.

“We hope that these atlases will become a common coordinate framework to facilitate the discovery of new insights into developmental processes underpinning child cognition and social behavior,” Yap said.

This research was funded by the the National Institute of Biomedical Imaging and Bioengineering under grant R01EB008374 and the National Institute of Mental Health under grant R01MH125479.



Journal

Nature Methods

DOI

10.1038/s41592-022-01703-z

Method of Research

Imaging analysis

Subject of Research

People

Article Title

Multifaceted atlases of the human brain in its infancy

Article Publication Date

30-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Assistance Needs in Home-Dwelling Seniors

October 31, 2025

Addressing Urban Healthcare Overcrowding: Stakeholder Insights

October 31, 2025

Mid-Adolescence Boosts Autistic Individuals’ Induction Skills

October 31, 2025

Time Pressure Impact on Finnish Home Care Nurses

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Assistance Needs in Home-Dwelling Seniors

On-Farm Trials Boost Grain Micronutrient Levels

Addressing Urban Healthcare Overcrowding: Stakeholder Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.