• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers unravel viruses’ strategies to dodge immune systems

Bioengineer by Bioengineer
November 7, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As mammals evolve, so do mammalian viruses. In doing so, they develop creative and effective ways to counter and evade the antiviral responses of their mammal hosts' immune systems. Researching those mechanisms at the molecular level can reveal key insights into the principles of such strategies relevant to therapy development. An international team of scientists, led by prof. Savvas Savvides of the VIB Inflammation Research Center at Ghent University, set out to do just that. By zooming in on GIF — a protein secreted by the virus that causes Orf, or 'thistle disease' — they unraveled viral molecular strategies to counter the mammalian immune system. Their findings, published in Nature Communications, provide the basis for developing antiviral therapies and for exploiting the potency of viral proteins to tweak the human immune system to counter inflammatory diseases and cancer.

Orf disease is highly contagious and causes painful scabby lesions on the lips and nostrils of animals such as sheep, goats and other livestock. As a zoonotic disease, it can also be transmitted to humans. In fact, Orf is in the top 20 most important viral diseases affecting the rural poor in developing countries — especially in economies that depend heavily on animal farming and agriculture. Although seldom fatal, the disease not only potentially leads to high mortality rates in young animals and children when lesions make it impossible for them to eat; lesions can also impact livestock reproduction and make infected hosts vulnerable to other infections. It is clear that determining just how the virus goes about its infectious business is of major socioeconomic significance.

An integrative, cross-border approach

Coordinated by prof. Savvas Savvides from VIB-Ghent University and spearheaded by Dr. Jan Felix, an international team of scientists rose to the challenge of shedding light onto how Orf cripples the mammalian immune system. The aim? To obtain structural and mechanistic information through an integrative structural biology approach on how GIF — one of the proteins secreted by the Orf virus — inactivates two key cytokines of the host immune system: IL-2 and GM-CFS. Both proteins play key roles in cell signaling and immune system regulation.

Prof. Savvides (VIB-Ghent University): "Our approach involved the use of various methods in the spirit of integrative structural biology, including x-ray crystallography and electron microscopy, combined with biochemical and biophysical studies. To achieve this, we worked closely with colleagues from France, the United Kingdom, and the Netherlands. In addition, much appreciated research funding from national and international agencies, as well as access to specialized facilities at the European level proved to be crucial for our research."

A rare and surprising discovery

Prof. Savvides (VIB-Ghent University): "We investigated GIF because we are intrigued by how viruses use specialized proteins to change the immune system's response. What we discovered was surprising: it is very rare that one viral protein can target two different host proteins to dodge the immune response, yet this functional duality is exactly what characterizes GIF. Most surprising was the finding that GIF uses its structure in distinct ways to target the cytokines IL-2 and GM-CSF with high affinity. Remarkably, GIF's structure does not look anything like the natural receptors of the cytokines it targets, yet it is able to mimic their ability to bind to IL-2 and GM-CSF to prevent the normal functions of the two cytokines. A scary feat!"

Great potential for innovative therapies

Prof. Savvides (VIB-Ghent University): "By unveiling how GIF works, we have taken an important step towards understanding the molecular virtuosity that viral proteins develop as they evolve, and how they interact with their hosts' immune systems. As our research moves forward, we would like to consolidate our findings. This, in turn, may help us use viral protein structures, like GIF, to target human proteins in a therapeutic context to combat inflammatory diseases and cancer."

###

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

Share13Tweet8Share2ShareShareShare2

Related Posts

Enhancing Clinician Decision-Making: The SHARE Approach

September 11, 2025

Fluctuating DNA Methylation Maps Cancer Evolution

September 11, 2025

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

September 11, 2025

Amino Acids Stabilize Proteins and Colloids

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Clinician Decision-Making: The SHARE Approach

Fluctuating DNA Methylation Maps Cancer Evolution

Ultrabroadband Carbon Nanotube Scanners Revolutionize Pharma Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.