• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers uncover the skin barrier

Bioengineer by Bioengineer
September 27, 2016
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Faculty of Science at Lund University in Sweden can now explain how the properties of the skin change depending on the environment. The new findings explain, among other things, why people don’t dehydrate in dry air. The research results can also be used in the cosmetic and pharmaceutical industry to make substances penetrate the skin more effectively.

The PSI synchrotron radiation facility in Switzerland. To the left is the beamline that sends out the X-rays. The sample is attached to the small copper plate slightly to the right, and in the right-hand corner is the detector. Credit: Jenny Andersson
The PSI synchrotron radiation facility in Switzerland. To the left is the beamline that sends out the X-rays. The sample is attached to the small copper plate slightly to the right, and in the right-hand corner is the detector.
Credit: Jenny Andersson

The outer layer of skin can be described as a thin barrier — a kind of film that changes its properties and allows more or less water penetrate its surface, depending on whether the surrounding air is moist or dry. Chemists at the Faculty of Science in Lund have now successfully uncovered the underlying mechanism of how these barrier films control their properties. This is a general mechanism that explains on a molecular level how the skin regulates itself according to the environment but also to the properties of second barrier films, such as in paints, skin creams and food.

“Our results are interesting in several ways; among other things, it increases our understanding of skin functions. The results are relevant for the development of, for instance, cosmetics and pharmaceutical preparations of which certain substances are intended to penetrate the skin,” says Professor Emma Sparr at the Department of Chemistry in Lund, who led the study together with Dr. Kevin Roger, who now works at the University of Toulouse.

“A layer of skin cream can serve as an additional barrier that can open or close due to changes in humidity. The cream can also be designed so as to release its active substance better or worse, depending on whether the air is dry or humid,” says Emma Sparr.

There are also applications in other areas in which it is important to control the transportation of molecules through a barrier. By changing the external conditions, it is possible to affect the barrier function to let through more or fewer molecules of a particular substance. Among other things, the study may become important when companies want to develop formulas that regulate how and what substances are released into the environment.

The results were achieved through experiments at the synchrotron radiation facilities in Lund and in Switzerland. At the Paul Scherrer Institute in Switzerland, the researchers conducted the most advanced experiments using a combination of X-ray and microscopy, and successfully examined changes in the nanostructure inside the barrier film.

The results are published in an article in the scientific journal PNAS.

Web Source: Lund University.

Reference:

Kevin Roger, Marianne Liebi, Jimmy Heimdal, Quoc Dat Pham, Emma Sparr. Controlling water evaporation through self-assembly. Proceedings of the National Academy of Sciences, 2016; 113 (37): 10275 DOI: 10.1073/pnas.1604134113

The post Researchers uncover the skin barrier appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

Free-Roaming Bison in Yellowstone Boost Grassland Resilience

August 28, 2025

Maximizing Liver Graft Use from Circulatory Death Donors

August 28, 2025

Borosilicate Glass Enhances Magnetic Hyperthermia Against Bone Tumors

August 28, 2025

Gastrointestinal Effects of Incretin Obesity Drugs Explored

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unequal Human Exposure to Future Climate Extremes

Free-Roaming Bison in Yellowstone Boost Grassland Resilience

Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.