• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers uncover potential non-opioid treatment for chronic pain

Bioengineer by Bioengineer
January 31, 2024
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Among the most difficult types of pain to alleviate is neuropathic pain, pain that is usually caused by damage to nerves in various body tissues, including skin, muscle and joints. It can cause patients to suffer feelings like electric shocks, tingling, burning or stabbing. Diabetes, multiple sclerosis, chemotherapy drugs, injuries and amputations have all been associated with neuropathic pain, which is often chronic, sometimes unrelenting and affects millions of people worldwide. Many of the available pain medications are only moderately effective at treating this type of pain and often come with serious side effects, as well as risk of addiction.

Neuropathic pain

Credit: The University of Texas at Austin

Among the most difficult types of pain to alleviate is neuropathic pain, pain that is usually caused by damage to nerves in various body tissues, including skin, muscle and joints. It can cause patients to suffer feelings like electric shocks, tingling, burning or stabbing. Diabetes, multiple sclerosis, chemotherapy drugs, injuries and amputations have all been associated with neuropathic pain, which is often chronic, sometimes unrelenting and affects millions of people worldwide. Many of the available pain medications are only moderately effective at treating this type of pain and often come with serious side effects, as well as risk of addiction.

Now researchers at UT Austin, The University of Texas at Dallas and the University of Miami have identified a molecule that reduces hypersensitivity in trials in mice by binding to a protein they have shown is involved in neuropathic pain. 

The findings appear in the journal Proceedings of the National Academy of Sciences. 

“We found it to be an effective painkiller, and the effects were rather long-lived,” said Stephen Martin, the June and J. Virgil Waggoner Regents Chair in Chemistry at The University of Texas at Austin and co-corresponding author of the paper. “When we tested it on different models, diabetic neuropathy and chemotherapy-induced neuropathy, for example, we found this compound has an incredible beneficial effect.”

The new compound, dubbed FEM-1689, does not engage opioid receptors in the body, making it a possible alternative to existing pain medications linked to addiction. In addition to reducing sensitivity, the compound can help regulate the integrated stress response (ISR), a network of cellular signaling that helps the body respond to injuries and diseases. When well regulated, the ISR restores balance and promotes healing. When it goes awry, the ISR can contribute to diseases such as cancer, diabetes and metabolic disorders.

“It’s our goal to make this compound into a drug that can be used to treat chronic pain without the dangers of opioids,” Martin said. “Neuropathic pain is often a debilitating condition that can affect people their entire lives, and we need a treatment that is well tolerated and effective.”

NuvoNuro Inc., a company co-founded by Martin and other authors on the paper, was recently awarded a grant from the National Institutes of Health HEAL Initiative, which funds research to find scientific solutions to the national opioid crisis, to create a drug based on their findings.

“This work is the culmination of a wonderful five-year collaboration with our colleagues at UT Austin and is a great example of academic drug discovery pushing the field of non-opioid pain therapeutics forward,” said Theodore Price, a professor of neuroscience at The University of Texas at Dallas and co-corresponding author of the paper. “Our funding from NIH on this continuing project through our spin-out company, NuvoNuro, has the potential to take us toward clinical development in the next few years, which is extraordinarily exciting.”

Muhammad Saad Yousuf, Eric T. David, Stephanie Shiers, Marisol Mancilla Moreno, Jonathan Iketem, Danielle M. Royer, Chelsea D. Garcia, Jennifer Zhang, Veronica M. Hong, Subhaan M. Mian, Ayesha Ahmad and Benedict J. Kolber of The University of Texas at Dallas;  James J. Sahn and Hongfen Yang of UT Austin; and Daniel J. Liebl of University of Miami Miller School of Medicine were also authors on the paper.

The research was funded by the National Institutes of Health, Natural Sciences and Engineering Research Council of Canada and the Robert A. Welch Foundation.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. University investigators involved in this research have submitted required financial disclosure forms with the University. As co-founders of NuvoNuro Inc., Stephen Martin and James Sahn also are co-inventors on patents and pending patent applications related to work described in this article.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2306090120

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Highly specific σ2R/TMEM97 ligand FEM-1689 alleviates neuropathic pain and inhibits the integrated stress response

Article Publication Date

20-Dec-2023

COI Statement

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest. University investigators involved in this research have submitted required financial disclosure forms with the University. As co-founders of NuvoNuro Inc., Stephen Martin and James Sahn also are co-inventors on patents and pending patent applications related to work described in this article.

Share12Tweet8Share2ShareShareShare2

Related Posts

Al–Salen Catalyst Powers Enantioselective Photocyclization

Al–Salen Catalyst Powers Enantioselective Photocyclization

August 9, 2025
Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neuroprosthetics Revolutionize Gut Motility and Metabolism

Corticosterone and 17OH Progesterone in Preterm Infants

Multivalent mRNA Vaccine Protects Mice from Monkeypox

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.