• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers to develop scaffolding for nerve regeneration with $2.14M NIH grant

Bioengineer by Bioengineer
August 16, 2022
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNIVERSITY PARK, Pa. — Peripheral nerves are responsible for moving muscles, sensing temperatures and even inhaling and exhaling; yet they comprise fragile fibers vulnerable to disease and injury. To maximize healing for the easily damaged nerves, Penn State researchers are using a five-year, $2.14 million grant from the National Institutes of Health’s National Institute of Neurological Disorders and Stroke to develop a biodegradable nerve scaffold that aims to employ folate and citrate in novel ways.  

Tissue regeneration

Credit: Kelby Hochreither/Penn State

UNIVERSITY PARK, Pa. — Peripheral nerves are responsible for moving muscles, sensing temperatures and even inhaling and exhaling; yet they comprise fragile fibers vulnerable to disease and injury. To maximize healing for the easily damaged nerves, Penn State researchers are using a five-year, $2.14 million grant from the National Institutes of Health’s National Institute of Neurological Disorders and Stroke to develop a biodegradable nerve scaffold that aims to employ folate and citrate in novel ways.  

“Folate and citrate strengthen different pathways to help tissue regeneration, and we have both in one biomaterial,” said principal investigator Jian Yang, professor of biomedical engineering in the Penn State College of Engineering who is also affiliated with the Materials Research Institute. “We have been working with citrate in biomaterials for more than 16 years. Researchers have known for a while one of the benefits of using citrate as a building block for biomaterials is that when the material degrades, citrate helps to regulate cell metabolism, which in turn regulates the stem cell differentiation to help tissue regeneration.” 

The use of citrate in biomaterials is not new, according to Yang, but the addition of folic acid, or vitamin B9, into the polymer backbone of their nerve scaffold is. Folate — one of the key vitamins found in prenatal vitamins because it plays a critical role in the development of the central nervous system — also plays an important, if lesser known, role in helping the peripheral nervous system develop.  

Peripheral nerves have two major components: axons and Schwann cells. Axons transmit signals from the body to the brain and back again. Schwann cells “pave the road” for axons, according to Yang, and folate helps Schwann cells move to the right spot.  

“Schwann cells are like the pavement on top of which the axons can grow,” Yang said. “We found that folate can promote Schwann cell migration, or ‘paving the road,’ which is a critical step to promote nerve regeneration, because the nerves have to cross the gap to grow and reconnect.”  

This gap, or the nerve defect or spot of damage, is where the researchers will place the engineered and folate-fortified nerve conduit to encourage nerve regeneration.

“People may ask, ‘Why don’t I just simply take folate?’” Yang said. “But we discovered that the key for repairs is delivering a significant concentration of folate locally to promote Schwann cell migration and axon regeneration.” 

The researchers can also use folate to modify the physical structure of DNA to better control how the cells develop during regeneration.  

 “We don’t change the DNA sequence, but we modify the DNA through DNA methylation to control the neuron cell differentiation to regrow the nerve,” Yang said. “It’s called an epigenetic stimulation. People already identified that folate can be an epigenetic factor, but no one incorporated the folate into biomaterials to make nerve conduits.” 

In addition to developing the nerve conduit scaffold with folate and citate, the researchers plan to employ photoacoustic imaging to closely monitor how the materials degrade and how the tissue regenerates, along with other outcomes. Co-PI Raj Kothapalli, Penn State assistant professor of biomedical engineering, will lead this noninvasive imaging technique effort.  

“When it comes to complex tissue regeneration, no individual lab can do all the work,” Yang said. “You need expertise from many different fields, which is why the collaborative nature of this project is so important.” 

The other co-investigators on the project, all from Penn State, are: Sulin Zhang, professor of engineering science and mechanics and of biomedical engineering, who is also affiliated with the Materials Research Institute and the Department of Materials Science and Engineering in the College of Earth and Mineral Sciences; Cheng Dong, distinguished professor of biomedical engineering, and Elias Rizk, associate professor of neurosurgery at Penn State College of Medicine and neurosurgeon at Penn State Health.  



Share12Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.