• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers tackle methane emissions with gas-guzzling bacteria

Bioengineer by Bioengineer
August 30, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international research team co-led by a Monash biologist has shown that methane-oxidising bacteria – key organisms responsible for greenhouse gas mitigation – are more flexible and resilient than previously thought.

Soil bacteria that oxidise methane (methanotrophs) are globally important in capturing methane before it enters the atmosphere, and we now know that they can consume hydrogen gas to enhance their growth and survival.

This new research, published in the prestigious International Society for Microbial Ecology Journal, has major implications for greenhouse gas mitigation.

Industrial companies are using methanotrophs to convert methane gas emissions into useful products, for example liquid fuels and protein feeds.

"The findings of this research explain why methanotrophs are abundant in soil ecosystems," said Dr Chris Greening from the Centre for Geometric Biology at Monash University.

"Methane is a challenging energy source to assimilate.

"By being able to use hydrogen as well, methanotrophs can grow better in a range of conditions."

Methanotrophs can survive in environments when methane or oxygen are no longer available.

"It was their very existence in such environments that led us to investigate the possibilities that these organisms might also use other energy-yielding strategies," Dr Greening said.

Dr Greening's lab focuses on the metabolic strategies that microorganisms use to persist in unfavourable environments and he studies this in relation to the core areas of global change, disease and biodiversity.

In this latest study, Dr Greening and collaborators isolated and characterised a methanotroph from a New Zealand volcanic field. The strain could grow on methane or hydrogen separately, but performed best when both gases were available.

"This study is significant because it shows that key consumers of methane emissions are also able to grow on inorganic compounds such as hydrogen," Dr Greening said.

"This new knowledge helps us to reduce emissions of greenhouse gases. "

Industrial processes such as petroleum production and waste treatment release large amounts of the methane, carbon dioxide and hydrogen into the atmosphere.

"By using these gas-guzzling bacteria, it's possible to convert these gases into useful liquid fuels and feeds instead," Dr Greening said.

###

The research was co-led by Dr Carlo Carere and Dr Matthew Stott from GNS Science, New Zealand. The full paper can be read at : http://www.nature.com/ismej/journal/vaop/ncurrent/full/ismej2017112a.html

Media Contact

Silvia Dropulich
[email protected]
043-513-8743
@MonashUni

http://www.monash.edu.au

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Spider Web “Decorations” Could Reveal Exact Location of Captured Prey

October 29, 2025
blank

Lehigh University Researchers Create Computational Model to Optimize Neurostimulation Therapy for Atrial Fibrillation

October 29, 2025

Breakthrough in Spinal Cord Injury: Bioinformatics Paves the Way for Regenerative Therapy

October 29, 2025

Unraveling the Science Behind Wildlife Trafficking and Its Links to Organized Crime

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Enhances Breast Cancer Survival Predictions

Hypoxia Alters Calpastatin, Influencing Trophoblast Function

Unlocking Longevity: How a Unique Protein Repairs DNA in Bowhead Whales

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.