• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers solve a scientific mystery about evaporation

Bioengineer by Bioengineer
January 13, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Work has implications for power generation, desalination, electronics

IMAGE

Credit: University of Houston


Evaporation can explain why water levels drop in a full swimming pool, but it also plays an important role in industrial processes ranging from cooling electronics to power generation. Much of the global electricity supply is generated by steam plants, which are driven by evaporation.

But determining when and how quickly a liquid will convert to a vapor has been stymied by questions about how – and how much – the temperature changes at the point where the liquid meets the vapor, a concept known as temperature discontinuity. Those questions have made it more difficult to create more efficient processes using evaporation, but now researchers from the University of Houston have reported answers to what happens at that interface, addressing 20 years of conflicting findings. The work was reported in the Journal of Physical Chemistry.

The temperature discontinuity was first reported in 1999 by Canadian researchers G. Fang and C.A. Ward, who noted that they were unable to explain the phenomenon through classical mechanics. The new work solves that mystery.

Hadi Ghasemi, Cullen Associate Professor of Mechanical Engineering at UH, said the new understanding eliminates the “bottleneck” that has complicated predictions and simulations of processes involving evaporation.

“We demonstrated the physics of what happens within the space of a few molecules at the interface and accurately developed a theory on the evaporation rate,” Ghasemi said. “That allowed us to explain all of the conflicting findings that have been reported in the last 20 years and solve this mystery.”

In addition to Ghasemi, co-authors for the paper included first author Parham Jafari, a PhD student at UH, and Amit Amritkar, a research assistant professor at UH.

The researchers first approached the question in the lab, but Ghasemi said they were unable to get the needed spatial resolution for a definitive answer. They used a computational approach in order to find the properties of liquid and vapor within the length of a few molecules.

The explanation – developed using the Direct Simulation Monte Carlo method – will allow scientists to more accurate simulate the performance of all systems based on the theory of evaporation.

“With this understanding, we can more accurately develop simulations of performance and efficiency, as well as design and predict the behavior of advanced systems,” Ghasemi said.

That would have applications for energy, electronics, photonics and other fields.

As just one example of the importance of evaporation, Ghasemi noted that 80% of electric power globally is generated through steam plants, which work based on evaporation phenomena.

###

Media Contact
Jeannie Kever
[email protected]
713-743-0778

Original Source

https://uh.edu/news-events/stories/january-2020/01132020-ghasemi-evaporation.php

Related Journal Article

http://dx.doi.org/10.1021/acs.jpcc.9b10838

Tags: Chemistry/Physics/Materials SciencesMechanical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
High-Throughput Discovery of Fluoroprobes for Amyloid

High-Throughput Discovery of Fluoroprobes for Amyloid

August 15, 2025

Ocular Side Effects Associated with Semaglutide: New Insights

August 15, 2025

Quantum Gas Defies Warming: A Cool Breakthrough in Physics

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Urban Meteorology and Chemistry Drive Heat-Ozone Extremes

One in Three U.S. Adults Unaware of HPV’s Link to Cancer

Obesity Patients’ Struggles Seeking Support Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.