• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers shed light on how our eyes process visual cues

Bioengineer by Bioengineer
June 7, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The mystery of how human eyes compute the direction of moving light has been made clearer by scientists at The University of Queensland.

Using advanced electrical recording techniques, researchers from UQ's Queensland Brain Institute (QBI) discovered how nerve cells in the eye's retina were integral to the process.

Professor Stephen Williams said that dendrites – the branching processes of a neuron that conduct electrical signals toward the cell body – played a critical role in decoding images.

"The retina is not a simple camera, but actively processes visual information in a neuronal network, to compute abstractions that are relayed to the higher brain," Professor Williams said.

"Previously, dendrites of neurons were thought to be passive input areas.

"Our research has found that dendrites also have powerful processing capabilities."

Co-author Dr Simon Kalita-de Croft said dendritic processing enabled the retina to convert and refine visual cues into electrical signals.

"We now know that movement of light – say, a flying bird, or a passing car – gets converted into an electrical signal by dendritic processing in the retina," Dr Kalita-de Croft said.

"The discovery bridges the gap between our understanding of the anatomy and physiology of neuronal circuits in the retina."

Professor Williams said the ability of dendrites in the retina to process visual information depended on the release of two neurotransmitters – chemical messengers – from a single class of cell.

"These signals are integrated by the output neurons of the retina," Professor Williams said.

"Determining how the neural circuits in the retina process information can help us understand computational principles operational throughout the brain.

"Excitingly, our discovery provides a new template for how neuronal computations may be implemented in brain circuits."

###

The study, Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells, has been published in the journal Nature Communications.

Media Contact

Donna Lu
[email protected]
61-405-661-856
@uq_news

http://www.uq.edu.au

http://dx.doi.org/10.1038/ncomms15683

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.