• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers shed (laser) light on emerging water treatment technique

Bioengineer by Bioengineer
December 9, 2022
in Chemistry
Reading Time: 4 mins read
0
Dugan Hayes photo
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

KINGSTON, R.I. – Dec. 8, 2022 – Assuring that a growing global population has access to clean water will require new water treatment methods. One of these next-generation methods involves a form of iron called ferrate, which creates fewer toxic byproducts than chemicals like chlorine and is potentially cheaper and easier to deploy than complex ozone treatment systems.

Dugan Hayes photo

Credit: URI Photo/Michael Salerno

KINGSTON, R.I. – Dec. 8, 2022 – Assuring that a growing global population has access to clean water will require new water treatment methods. One of these next-generation methods involves a form of iron called ferrate, which creates fewer toxic byproducts than chemicals like chlorine and is potentially cheaper and easier to deploy than complex ozone treatment systems.

For ferrate to work best, however, it needs to be combined with other compounds or excited by light energy. Now, using a technique involving ultra-fast laser and X-ray pulses, a team of University of Rhode Island researchers has revealed new details about the chemical reaction that occurs when ferrate is exposed to visible and ultraviolet light. The findings, published in the Journal of the American Chemical Society, could help researchers to optimize its use in water treatment applications.

“The light activation of ferrate has really never been investigated in detail,” said Dugan Hayes, an assistant professor of chemistry at URI and the study’s corresponding author. “In this study, we were able to reveal some of those photophysical properties for the first time.”

Ferrate is an oxidant, meaning it can break down contaminants by stealing their electrons. On its own, ferrate is a fairly strong oxidant. But when excited by light, it produces an even more powerful oxidant known as Fe(V) (or iron-5+). Before this new study, however, it wasn’t known just how much energy was required to produce Fe(V), and in what quantities it could be produced.

To find those things out, Cali Antolini, a Ph.D. student in Hayes’ lab, led experiments using transient absorption spectroscopy, a technique that investigates photochemical reactions using ultra-fast laser pulses. An initial pulse initiates a reaction, while subsequent pulses probe the reaction steps as they play out. The speed of the pulses—on the order of a few quadrillionths of a second—gives researchers a detailed record of even the shortest-lived reaction products.

Antolini carried out experiments using ultraviolet and visible light pulses using facilities at URI. She performed similar experiments using X-rays at Argonne National Laboratory’s Advanced Photon Source in Chicago, where Antolini works as part of a Department of Energy student research program. 

The work showed that the conversion rate from ferrate to the highly reactive Fe(V) was about 15%. That’s roughly similar to the radical production of ozone purification systems. The research also produced surprising results related to the type of light needed to produce the more reactive iron species. The team found that a range of light wavelengths, stretching from ultraviolet spectra nearly into the visible, should be able to produce Fe(V). That’s an important finding for two reasons, the researchers say. Visible light takes less energy to produce that ultraviolet light, which could make ferrate excitation more energy efficient than had been previously assumed. Plus, visible light scatters less in cloudy water, meaning Fe(V) can be produced in a wide variety of water conditions.

The results are encouraging to Joseph Goodwill, an assistant professor of civil and environmental engineering at URI and a study coauthor. Part of his research program is finding ways to bridge the “clean water gap” between larger urban water treatment systems and small rural systems.

Ferrate-based purification systems are a promising option for smaller systems, where expensive and elaborate ozone systems aren’t practical, Goodwill says. Ferrate also has the potential to decrease reliance on harsh chemicals like chlorine, and may even eliminate stubborn contaminants that chlorine can’t remove. Those include per-/polyfluoroalkyl substances (PFAS), a class of chemicals increasingly found in wells and water systems across the U.S. But before ferrate systems can be widely deployed, scientists need a better understanding of ferrate chemistry. 

“The formation of powerful oxidants from ferrate has been difficult to understand mechanistically, and this has blocked process optimization and full-scale implementation in water treatment applications,” Goodwill said. “The results presented in this paper improve our fundamental understanding of the ferrate system, which opens doors for applications.”

The researchers are hopeful that these new findings on how ferrate photochemistry works will help in expanding the use of iron-based water treatment.

The research was supported by the U.S. Department of Energy (DE-SC0019429 and DE-AC02-06CH11357) and the National Science Foundation (2046383).



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.2c08048

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion

Article Publication Date

1-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1263 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    295 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Surgical Transfer Sheet: A Randomized Trial

Exploring Inflammatory Pathways in Hypertensive Nephrosclerosis Progression

Impact of PEG 6000 on Okra Seed Germination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.