• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Researchers reverse heart failure in Marfan mice

Bioengineer.org by Bioengineer.org
January 29, 2018
in Headlines, Health, Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Johns Hopkins Medicine

In experiments with mice that have a rodent form of Marfan syndrome, Johns Hopkins researchers report that even modestly increasing stress on the animals' hearts — at levels well-tolerated in normal mice — can initiate heart failure. The findings, described August 4 in the Journal of Clinical Investigation Insight, revealed a novel cellular pathway in heart tissue that leads to heart failure and may serve as a model for a new standard of treatment for children with this aggressive form of Marfan syndrome.

Marfan syndrome is a genetic disorder that affects connective tissue throughout the body, elongating limbs, fingers and toes, for example. However, its worst effects are in the heart's blood vessels and valves. Aortic enlargement, heart valve leaks and heart failure — marked by heart enlargement and weakened pumping action — are all potentially life-threatening.

The Hopkins team's interest in the mouse model grew out of the clinical experience of children with Marfan seen at The Johns Hopkins Hospital over decades.

###

To view the animation that accompanies this release please click here. To view b-roll footage and an interview with Dr. Rouf please click here.

Media Contact

Rachel Butch
[email protected]
410-955-8665
@HopkinsMedicine

http://www.hopkinsmedicine.org

Original Source

https://www.hopkinsmedicine.org/news/media/releases/researchers_reverse_heart_failure_in_marfan_mice

Share12Tweet8Share2ShareShareShare2

Related Posts

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

December 21, 2025

Antisense Therapy Reverses Developmental Defects in SMA Organoids

December 21, 2025

Black Soldier Fly Larvae Boost African Catfish Growth

December 21, 2025

Unraveling Influenza A Host Tropism through Nucleotide Signatures

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

Antisense Therapy Reverses Developmental Defects in SMA Organoids

Black Soldier Fly Larvae Boost African Catfish Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.